Publications by authors named "Robert J Mourey"

While mitogen-activated protein kinase (MAPK) activation has been implicated in the pathogenesis of various glomerular diseases, including nephrotic syndrome (NS), its specific role in podocyte injury is not known. We hypothesized that MK-2, a downstream substrate of p38 MAPK, mediates the adverse effects of this pathway and that inhibition of MK-2 would protect podocytes from NS-related injury. Using cultured podocytes, we analyzed 1) the roles of MK-2 and p38 MAPK in puromycin aminonucleoside (PAN)-induced podocyte injury; 2) the ability of specific MK-2 and p38 MAPK inhibitors to protect podocytes against injury; 3) the role of serum albumin, known to induce podocyte injury, in activating p38 MAPK/MK-2 signaling; and 4) the role of p38 MAPK/MK-2 signaling in the expression of Cox-2, an enzyme associated with podocyte injury.

View Article and Find Full Text PDF
Article Synopsis
  • Exposure to p38alpha MAPK inhibitors in Beagle dogs leads to acute toxicity characterized by symptoms like decreased activity, diarrhea, and fever, alongside severe lymphoid tissue damage and hemorrhages.
  • The earliest noticeable changes include lymphocyte death in gut-associated lymphoid tissue, progressing to inflammation and additional tissue damage in lymph nodes and spleen.
  • These toxic effects were specific to dogs, as similar observations were not found in other tested species like mice, rats, or monkeys, highlighting the unique response to p38alpha MAPK inhibition in dogs.
View Article and Find Full Text PDF

Activation of the p38 kinase pathway in immune cells leads to the transcriptional and translational regulation of proinflammatory cytokines. Mitogen-activated protein kinase-activated protein kinase 2 (MK2), a direct downstream substrate of p38 kinase, regulates lipopolysaccharide (LPS)-stimulated tumor necrosis factor alpha (TNFalpha) and interleukin-6 (IL-6) production through modulating the stability and translation of these mRNAs. Developing small-molecule inhibitors of MK2 may yield anti-inflammatory efficacy with a different safety profile relative to p38 kinase inhibitors.

View Article and Find Full Text PDF

Rho kinase, is the most widely studied downstream effector of the small Rho GTPase RhoA. Two Rho kinase isoforms have been described and are frequently referred to in the literature as ROCK1 and ROCK2. The RhoA-Rho kinase pathway has been implicated in the recruitment of cellular infiltrates to disease loci in a number of preclinical animal models of inflammatory disease.

View Article and Find Full Text PDF

Identification of potent benzothiophene inhibitors of mitogen activated protein kinase-activated protein kinase 2 (MK2), structure-activity relationship (SAR) studies, selectivity assessments against CDK2, cellular potency and mechanism of action are presented. Crystallographic data provide a rationale for the observed MK2 potency as well as selectivity over CDK2 for this class of inhibitors.

View Article and Find Full Text PDF

Optimization of kinase selectivity for a set of benzothiophene MK2 inhibitors provided analogs with potencies of less than 500 nM in a cell based assay. The selectivity of the inhibitors can be rationalized by examination of X-ray crystal structures of inhibitors bound to MK2.

View Article and Find Full Text PDF

A potent pyridine-containing MK2 inhibitor has recently been internally discovered. In pre-clinical dosing, the low solubility of the neutral form limited oral bioavailability and dose escalation in toxicity studies. A mesylate salt was developed as part of a formulation strategy to enhance both oral bioavailability and dose escalation orally in pre-clinical rat studies.

View Article and Find Full Text PDF

A series of pyrazole inhibitors of p38 mitogen-activated protein (MAP) kinase were designed using a binding model based on the crystal structure of 1 (SC-102) bound to p38 enzyme. New chemistry using dithietanes was developed to assemble nitrogen-linked substituents at the 5-position of pyrazoles. Calculated log D was used in tandem with structure-based design to guide medicinal chemistry strategy and improve the in vivo activity of a series of molecules.

View Article and Find Full Text PDF

A new class of potent kinase inhibitors selective for mitogen-activated protein kinase-activated protein kinase 2 (MAPKAP-K2 or MK-2) for the treatment of rheumatoid arthritis has been prepared and evaluated. These inhibitors have IC50 values as low as 10 nM against the target and have good selectivity profiles against a number of kinases including CDK2, ERK, JNK, and p38. These MK-2 inhibitors have been shown to suppress TNFalpha production in U397 cells and to be efficacious in an acute inflammation model.

View Article and Find Full Text PDF

The kinetic mechanism of mitogen-activated protein kinase activated protein kinase-2 (MAPKAPK2) was investigated using a peptide (LKRSLSEM) based on the phosphorylation site found in serum response factor (SRF). Initial velocity studies yielded a family of double-reciprocal lines that appear parallel and indicative of a ping-pong mechanism. The use of dead-end inhibition studies did not provide a definitive assignment of a reaction mechanism.

View Article and Find Full Text PDF