Publications by authors named "Robert J Mitchell"

A new species of bacterial predator (PP10) was isolated from a biocrust sample taken from near Potter Cove, King George Island, Antarctica (62°14'15.62″S 58°43'15.65″W).

View Article and Find Full Text PDF

In nature, bacteria often swim in complex fluids, but our understanding of the interactions between bacteria and complex surroundings is still evolving. In this work, rod-like swims in a quasi-2D environment with aqueous liquid-liquid interfaces, , the isotropic-nematic coexistence phase of an aqueous chromonic liquid crystal. Focusing on the bacteria motion near and at the liquid-liquid interfaces, we collect and quantify bacterial trajectories ranging across the isotropic to the nematic phase.

View Article and Find Full Text PDF

Mitochondria play a multitude of essential roles within mammalian cells, and understanding how they control immunity is an emerging area of study. Lymphocytes, as integral cellular components of the adaptive immune system, rely on mitochondria for their function, and mitochondria can dynamically instruct their differentiation and activation by undergoing rapid and profound remodelling. Energy homeostasis and ATP production are often considered the primary functions of mitochondria in immune cells; however, their importance extends across a spectrum of other molecular processes, including regulation of redox balance, signalling pathways, and biosynthesis.

View Article and Find Full Text PDF

Identified as a newly described species from a biocrust in Svalbard, Norway (78° 54' 8.27″ N 12° 01' 20.34″ E), isolate PAP01 has different characteristics from any known predatory bacteria.

View Article and Find Full Text PDF

Biofilms are a major concern within the food industry since they have the potential to reduce productivity in situ (within the field), impact food stability and storage, and cause downstream food poisoning. Within this review, predatory bacteria as potential biofilm control and eradication agents are discussed, with a particular emphasis on the intraperiplasmic -and-like organism (BALO) grouping. After providing a brief overview of predatory bacteria and their activities, focus is given to how BALOs fulfill four attributes that are essential for biocontrol agents to be successful in the food industry: (1) Broad spectrum activity against pathogens, both plant and human; (2) Activity against biofilms; (3) Safety towards humans and animals; and (4) Compatibility with food.

View Article and Find Full Text PDF

In a survey of the International Space Station (ISS), the most common pathogenic bacterium identified in samples from the air, water and surfaces was . While growth under microgravity is known to cause physiological changes in microbial pathogens, including shifts in antibacterial sensitivity, its impact on is not well understood. Using high-aspect ratio vessels (HARVs) to generate simulated microgravity (SMG) conditions in the lab, we found lipid profiles are altered significantly, with a higher presence of branch-chained fatty acids (BCFAs) (14.

View Article and Find Full Text PDF

While diverse antibacterials are available in nature, each possesses their own strengths and limitations. One such antibacterial is colicins, proteinaceous toxins that are produced by strains of E. coli to subvert the growth or viability of other E.

View Article and Find Full Text PDF

With the growing threat of antibiotic resistance, researchers around the globe are seeking alternatives to stem bacterial pathogenesis. One such alternative is bacteriocins, proteins produced by bacterial species to inhibit the growth and viability of related bacterial species. With their diverse mechanisms, which include pore formation and nuclease activities, and narrow spectrum of activities, which limit their impact to only certain bacterial species, unlike many chemical antibiotics, bacteriocins offer intriguing possibilities to selectively control individual bacterial populations.

View Article and Find Full Text PDF

Biosensors are utilized in several different fields, including medicine, food, and the environment; in this review, we examine recent developments in biosensors for healthcare. These involve three distinct types of biosensor: biosensors for in vitro diagnosis with blood, saliva, or urine samples; continuous monitoring biosensors (CMBs); and wearable biosensors. Biosensors for in vitro diagnosis have seen a significant expansion recently, with newly reported clustered regularly interspaced short palindromic repeats (CRISPR)/Cas methodologies and improvements to many established integrated biosensor devices, including lateral flow assays (LFAs) and microfluidic/electrochemical paper-based analytical devices (μPADs/ePADs).

View Article and Find Full Text PDF

and like organisms (BALOs) are a unique bacterial group that live by predating on other bacteria, consuming them from within to grow and replicate before the progeny come out to complete the life cycle. The mechanisms by which these predators recognize their prey and differentiate them from nonprey bacteria, however, are still not clear. Through genetic knockout and complementation studies in different Escherichia coli strains, we found that Bdellovibrio bacteriovorus strain 109J recognizes outer membrane porin F (OmpF) on the E.

View Article and Find Full Text PDF

A method to rapidly quantify predatory bacterial cell populations using resazurin reduction to resorufin and its resulting fluorescence kinetics (dF/dt) are described. The reliability of this method to measure the predatory populations was demonstrated with the type strain, Bdellovibrio bacteriovorus HD100, as well as B. bacteriovorus 109J and two natural isolates, strains JA-1 and JA-3, with clear correlation when densities were between 10 and 10 PFU/ml.

View Article and Find Full Text PDF

Prodigiosin possesses antibacterial activities, but as a highly hydrophobic compound, it raised the question about how Serratia marcescens introduce this compound to other microbes. Here, we demonstrate that the production of prodigiosin by newly isolated S. marcescens RH10 correlates with its antibacterial activity against a multidrug-resistant strain of S.

View Article and Find Full Text PDF

As mankind evaluates moving toward permanently inhabiting outer space and other planetary bodies, alternatives to antibiotic that can effectively control drug-resistant pathogens are needed. The activity of one such alternative, Bdellovibrio bacteriovorus HD100, was explored here, and was found to be as active or better in simulated microgravity (SMG) conditions as in flask and normal gravity (NG) cultures, with the prey viabilities decreasing by 3- to 7-log CFU/mL in 24 h. The activity of B.

View Article and Find Full Text PDF

Despite their high potency, the widespread implementation of natural antimicrobial peptides is still challenging due to their low scalability and high hemolytic activities. Herein, we address these issues by employing a modular approach to mimic the key amino acid residues present in antimicrobial peptides, such as lysine, leucine, and serine, but on the highly biocompatible poly(ethylene glycol) (PEG) backbone. A series of these PEG-based peptides (PEGtides) were developed using functional epoxide monomers, corresponding to each key amino acid, with several possessing highly potent bactericidal activities and controlled selectivities, with respect to their hemolytic behavior.

View Article and Find Full Text PDF

In this review, we discuss violacein and prodigiosin, two chromogenic bacterial secondary metabolites that have diverse biological activities. Although both compounds were "discovered" more than seven decades ago, interest into their biological applications has grown in the last two decades, particularly driven by their antimicrobial and anticancer properties. These topics will be discussed in the first half of this review.

View Article and Find Full Text PDF

This study demonstrates the impact outer membrane permeability has on the power densities generated by E. coli-based microbial fuel cells with neutral red as the mediator, and how increasing the permeability improves the current generation. Experiments performed with several lipopolysaccharide (LPS) mutants (ΔwaaC, ΔwaaF and ΔwaaG) of E.

View Article and Find Full Text PDF

Recent years have witnessed increased interest in systems that are capable of supporting multistep chemical processes without the need for manual handling of intermediates. These systems have been based either on collections of batch reactors or on flow-chemistry designs, both of which require considerable engineering effort to set up and control. Here we develop an out-of-equilibrium system in which different reaction zones self-organize into a geometry that can dictate the progress of an entire process sequence.

View Article and Find Full Text PDF

Bdellovibrio bacteriovorus 109J is a predatory bacterium which lives by predating on other Gram-negative bacteria to obtain the nutrients it needs for replication and survival. Here, we evaluated the effects two classes of bacterial signaling molecules (acyl homoserine lactones (AHLs) and diffusible signaling factor (DSF)) have on B. bacteriovorus 109J behavior and viability.

View Article and Find Full Text PDF

Mutations that shorten the lipopolysaccharide (LPS) in Escherichia coli were found to significantly increase the number of transformants after electroporation. The loss of the LPS outer core increased the number of transformants with plasmid pAmCyan (3.3 kb) from 5.

View Article and Find Full Text PDF

Maternal behaviors benefit the survival of young, contributing directly to the mother's reproductive fitness. An extreme form of this is seen in matriphagy, when a mother performs the ultimate sacrifice and offers her body as a meal for her young. Whether matriphagy offers only a single energy-rich meal or another possible benefit to the young is unknown.

View Article and Find Full Text PDF

Bdellovibrio-and-like organisms (BALOs) are a small group of bacteria that actively predate on other Gram-negative bacterial species. Although viewed mostly in a positive light, such as their potential use as living antibiotics to reduce pathogenic strain populations, several studies have also highlighted the need to control their activities, such as in the production of biodiesel. Consequently, this mini-review discusses research being conducted to characterize compounds and environmental settings that influence predation rates and the mechanisms by which they accomplish this, with a heavy emphasis on studies published within the last decade.

View Article and Find Full Text PDF

This study describes Chromobacterium violaceum's use of extracellular membrane vesicles (MVs) to both solubilize and transport violacein to other microorganisms. Violacein is a hydrophobic bisindole with known antibiotic activities against other microorganisms. Characterization of the MVs found they carried more violacein than protein (1.

View Article and Find Full Text PDF

Bdellovibrio bacteriovorus HD100 is a highly motile predatory bacterium that consumes other Gram-negative bacteria for its sustenance. Here, we describe the impacts the media viscosity has both on the motility of predator and its attack rates. Experiments performed in polyethylene glycol (PEG) solutions, a linear polymer, found a viscosity of 10 mPa s (5% PEG) negatively impacted predation over a 24-h period.

View Article and Find Full Text PDF

We evaluated the toxicity of surfactants against different predatory bacteria. Tests with Bdellovibrio bacteriovorus HD100 and SDS, an anionic surfactant, showed the predator was very sensitive; 0.02% SDS completely killed the predatory population (7-log loss; < 10 PFU/ml remaining) both when free-swimming or within the bdelloplast, i.

View Article and Find Full Text PDF