The solution-phase structure and electronic relaxation dynamics of zinc bis-8-hydroxyquinoline [Zn(8HQ)] in dimethyl sulfoxide (DMSO) were examined using a broad array of spectroscopic techniques, complimented by ab initio calculations of molecular structure. The ground-state structure was determined using extended X-ray absorption fine structure (EXAFS) data collected on the Zn K-edge and diffusion ordered spectroscopy (DOSY) NMR. The complex was found to be monomeric and octahedral, with two bidentate 8-hydroxyquinolate ligands and two DMSO molecules coordinated to the zinc through oxygen atoms.
View Article and Find Full Text PDFScanning electrochemical microscopy was used to probe the topography and electrochemical activity of CoCrMo alloys mechanically polished in the presence of bovine calf serum (BCS) in a hip simulator. These substrates are made of the same alloy used in metal-on-metal bearings for artificial hip joints. The BCS serves as an in vitro substitute for the synovial fluid which forms a lubricant in the actual orthopedic device.
View Article and Find Full Text PDFThe one-electron reduction of [Au(mnt)(2)](2-) (mnt = [S(2)C(2)(CN)(2)](2-), maleonitriledithiolate), 1(2-), stands out in the rich redox chemistry of metal-mnt complexes as a chemically reversible but electrochemically irreversible process. Although the E(1/2) value of the primary redox reaction 1(2-)/1(3-) is only slightly medium dependent (ca. -1.
View Article and Find Full Text PDFWe report the cyclic voltammetry, chronoamperometry, and scanning electrochemical microscopy of ferrocene dissolved in deep eutectic solvents (DES), consisting of choline chloride (ChCl) and either trifluoroacetamide (TFA) or malonic acid as the hydrogen-bond donor. Despite the use of ultramicroelectrodes, which were required due to the modest conductivities of the DES employed, linear diffusion behavior was observed in cyclic voltammetric experiments. The high viscosity of 1:2 ChCl/TFA relative to non-aqueous electrochemical solvents leads to a low diffusion coefficient, 2.
View Article and Find Full Text PDFFrom the reaction of in situ generated 1,2-di(4-tert-butylphenyl)ethylene-1,2-dithiol, 2LH2, and Na[AuCl4].2H2O in 1,4-dioxane, green brown crystals of diamagnetic [N(n-Bu)4][AuIII(2L)2] (1) were obtained. As shown by cyclic voltammetry, 1 is a member of an electron-transfer series comprising the dianion [AuII(2L)2]2-, the monoanion [AuIII(2L)2]-, the neutral species [AuIII(2L*)(2L)]0 <--> [AuIII(2L)(2L*)]0, and the monocation [AuIII(2L*)2]+.
View Article and Find Full Text PDFThe bipolar conductance, BICON, technique for the measurement of solution resistance, based on the application of microsecond current pulses, as originally described by Enke and co-workers for measurements with conventional electrodes, was extended for use with ultramicroelectrodes, with a focus on its application in scanning electrochemical microscopy (SECM). When the plateau time used to make the measurement lies within the BICON conditions, the solution conductance can be obtained directly from the output without the need for calibration curves. However, decreasing the size of the ultramicroelectrode decreases the range of values that satisfy these conditions, and one must resort to calibration curves to obtain solution conductance from the measured current, which was nevertheless found to be proportional to electrolyte concentration with electrodes as small as 5 mum in diameter.
View Article and Find Full Text PDFCyclic voltammetry experiments at minielectrodes exhibit less ohmic error for lower polarity solvents when the supporting electrolyte anion is [B(C(6)F(5))(4)](-) rather than one of the smaller traditional anions such as [BF(4)](-), [PF(6)](-), or [ClO(4)](-). Conductance measurements have been performed for [NBu(4)][B(C(6)F(5))(4)] in tetrahydrofuran, dichloromethane, benzotrifluoride, and acetonitrile and compared with results for [NBu(4)](+) salts of several traditional anions in the same solvents. In solvents with dielectric constants of 10 or less, ion association constants, K(A), are as much as 2 orders of magnitude lower with [B(C(6)F(5))(4)](-), TFAB, as the electrolyte anion and the degree of this lowering is related to the acceptor property of the solvent.
View Article and Find Full Text PDF