Objectives To determine whether real-time passive notification of patient radiation exposure via a computerized physician order entry system would alter the number of computed tomography scans ordered by physicians in the Emergency Department (ED) setting. Methods When a practitioner ordered a computed tomography scan, a passive notification was immediately and prominently displayed via the computerized physician order entry system. The notification stated the following: the amount of estimated radiation in millisieverts (mSv), the equivalent number of single-view chest radiographs, and equivalent days of average environmental background radiation to which a patient during a specific computed tomography scan would be exposed.
View Article and Find Full Text PDFBackground: Visceral arteries are commonly involved in endovascular repair of complex abdominal aortic aneurysms (AAAs). To improve repair techniques and reduce long-term complications involving visceral arteries, it is crucial to understand in vivo arterial geometry and the deformations due to visceral organ movement with respiration. This study quantifies deformation of the celiac, superior mesenteric (SMA), and renal arteries during respiration and correlates the deformations with diaphragmatic excursion.
View Article and Find Full Text PDFObjective: To evaluate the role of commissure orientation on downstream blood flow patterns and ascending aortic wall shear stress (WSS) in patients with bicuspid aortic valves (BAV) after valve-sparing aortic root replacement (V-SARR).
Methods: Nineteen BAV patients after V-SARR (9 Sievers' type 1/LR [type 1 valve with fusion of the left and right cusps] and 10 Sievers' type 0/LAT ["naturally perfect"; type 0 valve without the presence of a raphe, and with the 2 commissures oriented right-anterior-to-left-posterior]) were imaged using time-resolved 3-D phase contrast magnetic resonance imaging. A control group of 5 unoperated tricuspid aortic valve patients were used for comparison purposes.
Objective: Separation methods exploit the different precessional frequencies of fat and water protons. They offer potential benefits to body MRI but are not routinely used in most practices. After a review of the technique, we highlight through cases promising applications of this technology, including using water-only series to obtain more robust fat-suppressed images, shortening MRI scanning protocol time, and achieving perfect coregistering of fat-suppressed and non-fat-suppressed images.
View Article and Find Full Text PDFThe ACR and the American College of Cardiology Foundation (ACCF) developed a joint process for determining the appropriate utilization (AU) of cardiovascular imaging modalities in heart failure (HF). This report represents an executive summary of the AU document which was aimed at critically and systematically creating, reviewing, and categorizing clinical situations where physicians order or use imaging tests for patients with suspected, incompletely characterized, or known HF.
View Article and Find Full Text PDFPurpose: To quantify respiration-induced deformations of the superior mesenteric artery (SMA), left renal artery (LRA), and right renal artery (RRA) in patients with small abdominal aortic aneurysms (AAAs).
Materials And Methods: Sixteen men with AAAs (age 73 y ± 7) were imaged with contrast-enhanced magnetic resonance angiography during inspiratory and expiratory breath-holds. Centerline paths of the aorta and visceral arteries were acquired by geometric modeling and segmentation techniques.
Background: Over the past two decades elective valve-sparing aortic root replacement (V-SARR) has become more common in the treatment of patients with aortic root and ascending aortic aneurysms. Currently there are little data available to predict complications in the post-operative population. The study goal was to determine if altered flow patterns in the thoracic aorta, as measured by MRI, are associated with complications after V-SARR.
View Article and Find Full Text PDFPurpose: To quantify renal artery deformation due to respiration using magnetic resonance (MR) image-based geometric analysis.
Materials And Methods: Five males were imaged with contrast-enhanced MR angiography during inspiratory and expiratory breath-holds. From 3D models of the abdominal aorta, left and right renal arteries (LRA and RRA), we quantified branching angle, curvature, peak curve angle, axial length, and locations of branch points.
Purpose: To determine whether a multiphase method with high spatiotemporal resolution (STR) by means of a combination of parallel imaging, pseudorandom sampling and temporal view sharing improves the capture and intensity of gadoxetate arterial phase images as well as lesion enhancement.
Materials And Methods: Thirty-seven patients were imaged with a conventional spoiled gradient echo acquisition and 48 with a high STR multiphase acquisition after the administration of gadoxetate. Arterial phase capture, image quality, and quality of fat suppression were qualitatively graded.
Objective: The quantification of cardiac flow and ventricular volumes is an essential goal of many congenital heart MRI examinations, often requiring acquisition of multiple 2D phase-contrast and bright-blood cine steady-state free precession (SSFP) planes. Scan acquisition, however, is lengthy and highly reliant on an imager who is well-versed in structural heart disease. Although it can also be lengthy, 3D time-resolved (4D) phase-contrast MRI yields global flow patterns and is simpler to perform.
View Article and Find Full Text PDFObjective: Noninvasive imaging of the heart and coronary vasculature using CT and MRI is a new and exciting opportunity for radiologists. The purpose of this pictorial essay is to review normal and variant anatomy of the coronary arteries and of several coronary anomalies that may be clinically significant. The coronary veins and artifacts simulating disease will also be briefly covered.
View Article and Find Full Text PDFAbdominal aortic aneurysm (AAA) is a vascular disease resulting in a permanent, localized enlargement of the abdominal aorta. We previously hypothesized that the progression of AAA may be slowed by altering the hemodynamics in the abdominal aorta through exercise [Dalman, R. L.
View Article and Find Full Text PDFRationale And Objectives: During radiofrequency catheter ablation for atrial fibrillation, the esophagus is at risk for thermal injury. In this study, C-arm computed tomography (CT) was compared to clinical CT, without the administration of oral contrast, to visualize the esophagus and its relationship to the left atrium and the ostia of the pulmonary veins (PVs) during the radiofrequency ablation procedure.
Materials And Methods: Sixteen subjects underwent both cardiac clinical CT and C-arm CT.
Purpose: The authors have developed a direct method to study femoral artery stent deformations in vivo. A previously described imaging and analysis approach based on a calibrated phantom was used to examine stents in human volunteers treated for atherosclerotic disease. In this pilot study, forces on stents were evaluated under different in-vivo flexion conditions.
View Article and Find Full Text PDFBackground: Cardiovascular flow is commonly assessed with two-dimensional, phase-contrast MRI (2-D PC-MRI). However, scan prescription and acquisition over multiple planes is lengthy, often requires direct physician oversight and has inconsistent results. Time-resolved volumetric PC-MRI (4-D flow) may address these limitations.
View Article and Find Full Text PDFHemodynamic conditions are hypothesized to affect the initiation, growth, and rupture of abdominal aortic aneurysms (AAAs), a vascular disease characterized by progressive wall degradation and enlargement of the abdominal aorta. This study aims to use magnetic resonance imaging (MRI) and computational fluid dynamics (CFD) to quantify flow stagnation and recirculation in eight AAAs by computing particle residence time (PRT). Specifically, we used gadolinium-enhanced MR angiography to obtain images of the vessel lumens, which were used to generate subject-specific models.
View Article and Find Full Text PDFObjective: The purpose of our study was to evaluate image quality in a 3D spoiled gradient-recalled echo (SPGR) sequence that was modified to incorporate respiratory navigation to limit the deleterious effects of respiratory motion and to compare it with conventional scanning during breath-holding and free breathing.
Conclusion: Respiratory navigation of 3D SPGR sequences is technically feasible, and image quality is modestly improved over free breathing acquisitions using conventional 3D SPGR sequences. This may represent a promising imaging alternative for patients who cannot hold their breath.
Purpose: Hemodynamic forces are thought to play a critical role in abdominal aortic aneurysm (AAA) growth. and simulations can be used to study these forces, but require accurate aortic geometries and boundary conditions. Many AAA simulations use patient-specific geometries, but utilize inlet boundary conditions taken from a single, unrelated, healthy young adult.
View Article and Find Full Text PDFAbdominal aortic aneurysms (AAAs) affect 5-7% of older Americans. We hypothesize that exercise may slow AAA growth by decreasing inflammatory burden, peripheral resistance, and adverse hemodynamic conditions such as low, oscillatory shear stress. In this study, we use magnetic resonance imaging and computational fluid dynamics to describe hemodynamics in eight AAAs during rest and exercise using patient-specific geometric models, flow waveforms, and pressures as well as appropriately resolved finite-element meshes.
View Article and Find Full Text PDFPurpose: To evaluate rest and exercise hemodynamics in patients with abdominal aortic aneurysms (AAA) and peripheral occlusive disease (claudicants) using phase-contrast MRI.
Materials And Methods: Blood velocities were acquired by means of cardiac-gated cine phase-contrast in a 0.5 Tesla (T) open MRI.
T1-W imaging of the pediatric abdomen is often limited by respiratory motion artifacts. Although navigation has been commonly employed for coronary MRA and T2-W imaging, navigation for T1-W imaging is less developed. Thus, we incorporated a navigator pulse into a fat-suppressed T1-W SPGR sequence such that steady-state contrast was not disrupted.
View Article and Find Full Text PDFPurpose: Vessel deformations have been implicated in endoluminal device fractures, and therefore better understanding of these deformations could be valuable for device regulation, evaluation, and design. The purpose of this study is to describe geometric changes of the superficial femoral artery (SFA) resulting from hip and knee flexion in older subjects.
Materials And Methods: The SFAs of seven healthy subjects aged 50-70 years were imaged with magnetic resonance angiography with the legs straight and with hip and knee flexion.
Purpose: To use a rat model for nephrogenic systemic fibrosis (NSF) that was administered high-dose gadodiamide to determine whether the co-administration of erythropoietin (Epo) and intravenous iron potentiated development of skin lesions that are thought to be a marker for the development of NSF.
Materials And Methods: The local committee for animal research approved this study. High-dose gadodiamide was administered, 2.
We report the first utilization of time-resolved three-dimensional phase contrast magnetic resonance imaging, termed 4D flow, to image a type I endoleak after endovascular aneurysm repair. The combination of 4D flow and a traditional magnetic resonance angiogram can aid in the accurate detection and characterization of endoleaks by combining the three-dimensional resolution of cross-sectional imaging with the temporally resolved velocity data of Doppler ultrasound.
View Article and Find Full Text PDF