J Air Waste Manag Assoc
August 2022
This paper reports the design and qualification of the first purpose-built, bench-scale reactor system to model the municipal waste-to-energy combustion of fluorinated polymers. Using the principle of similarity, the gas-phase combustion zone of a typical municipal waste-to-energy plant has been scaled down to the bench with a focus on chemical similarity. Chemical similarity is achieved in large part through the use of methanol as a surrogate for municipal solid waste (MSW).
View Article and Find Full Text PDFThis paper reports the first known comprehensive survey of combustion operating conditions across the wide range of municipal waste-to-energy facilities in the U.S. The survey was conducted in a step-wise fashion.
View Article and Find Full Text PDFThis study reports the first known studies to investigate the thermal degradation of a polyester/cellulose fabric substrate ("article") treated with a fluorotelomer-based acrylic polymer under laboratory conditions conservatively representing typical combustion conditions of time, temperature, and excess air level in a municipal incinerator, with an average temperature of 1000 degrees C or greater over approximately 2s residence time. The results demonstrate that the polyester/cellulose fabric treated with a fluorotelomer-based acrylic polymer is destroyed and no detectable amount of perfluorooctanoic acid (PFOA) is formed under typical municipal incineration conditions. Therefore, textiles and paper treated with such a fluorotelomer-based acrylic polymer disposed of in municipal waste and incinerated are expected to be destroyed and not be a significant source of PFOA in the environment.
View Article and Find Full Text PDF