Despite the importance of Wnt signaling for adult intestinal stem cell homeostasis and colorectal cancer, relatively little is known about its role in colon formation during embryogenesis. The development of the colon starts with the formation and extension of the hindgut. We show that is expressed in the caudal embryo in a dorsal-ventral (DV) gradient across all three germ layers, including the hindgut.
View Article and Find Full Text PDFWnt/β-catenin signals are important regulators of embryonic and adult stem cell self-renewal and differentiation and play causative roles in tumorigenesis. Purified recombinant Wnt3a protein, or Wnt3a-conditioned culture medium, has been widely used to study canonical Wnt signaling in vitro or ex vivo. To study the role of Wnt3a in embryogenesis and cancer models, we developed a Cre recombinase activatable Rosa26(Wnt3a) allele, in which a Wnt3a cDNA was inserted into the Rosa26 locus to allow for conditional, spatiotemporally defined expression of Wnt3a ligand for gain-of-function (GOF) studies in mice.
View Article and Find Full Text PDFThe Wnt/β-catenin signaling pathway controls embryonic development and adult stem cell maintenance through the regulation of transcription. Failure to downregulate Wnt signaling can result in embryonic malformations and cancer, highlighting the important role of negative regulators of the pathway. The Wnt pathway activates several negative feedback targets, including axin2 and Dkk1, that function at different levels of the signaling cascade; however, none have been identified that directly target active β-catenin/Tcf1 transcriptional complexes.
View Article and Find Full Text PDFThe ancient, highly conserved, Wnt signaling pathway regulates cell fate in all metazoans. We have previously shown that combined null mutations of the specificity protein (Sp) 1/Klf-like zinc-finger transcription factors Sp5 and Sp8 (i.e.
View Article and Find Full Text PDFIn the development of the vertebrate body plan, Wnt3a is thought to promote the formation of paraxial mesodermal progenitors (PMPs) of the trunk region while suppressing neural specification. Recent lineage-tracing experiments have demonstrated that these trunk neural progenitors and PMPs derive from a common multipotent progenitor called the neuromesodermal progenitor (NMP). NMPs are known to reside in the anterior primitive streak (PS) region; however, the extent to which NMPs populate the PS and contribute to the vertebrate body plan, and the precise role that Wnt3a plays in regulating NMP self-renewal and differentiation are unclear.
View Article and Find Full Text PDFNeuromesodermal (NM) stem cells generate neural and paraxial presomitic mesoderm (PSM) cells, which are the respective progenitors of the spinal cord and musculoskeleton of the trunk and tail. The Wnt-regulated basic helix-loop-helix (bHLH) transcription factor mesogenin 1 (Msgn1) has been implicated as a cooperative regulator working in concert with T-box genes to control PSM formation in zebrafish, although the mechanism is unknown. We show here that, in mice, Msgn1 alone controls PSM differentiation by directly activating the transcriptional programs that define PSM identity, epithelial-mesenchymal transition, motility and segmentation.
View Article and Find Full Text PDFEfficient blood flow depends on two developmental processes that occur within the atrioventricular junction (AVJ) of the heart: conduction delay, which entrains sequential chamber contraction; and valve formation, which prevents retrograde fluid movement. Defects in either result in severe congenital heart disease; however, little is known about the interplay between these two crucial developmental processes. Here, we show that AVJ conduction delay is locally assigned by the morphogenetic events that initiate valve formation.
View Article and Find Full Text PDFThe proepicardium (PE) is an embryonic tissue that gives rise to multipotent vascular progenitors. Most notably the PE gives rise to the epicardium, cardiac fibroblasts, myocardium, and coronary vessels including both vascular smooth muscle and vascular endothelium. Much attention has been given to epicardial-derived cells that show the capacity to differentiate into a wide variety of vascular progenitors including cardiomyocytes.
View Article and Find Full Text PDFThe mammalian heart expresses two myosin heavy chain (MYH) genes (Myh6 and Myh7), which are major components of the thick filaments of the sarcomere. We have determined that a third MYH, MYH7B, is also expressed in the myocardium. Developmental analysis shows Myh7b expression in cardiac and skeletal muscle of Xenopus, chick and mouse embryos, and in smooth muscle tissues during later stages of mouse embryogenesis.
View Article and Find Full Text PDFSemin Cell Dev Biol
December 2011
Of the many models to study vascular biology the avian embryo remains an informative and powerful model system that has provided important insights into endothelial cell recruitment, assembly and remodeling during development of the circulatory system. This review highlights several discoveries in the avian system that show how arterial patterning is regulated using the model of dorsal aortae development along the embryo midline during gastrulation and neurulation. These discoveries were made possible through spatially and temporally controlled gain-of-function experiments that provided direct evidence that BMP signaling plays a pivotal role in vascular recruitment, patterning and remodeling and that Notch-signaling recruits vascular precursor cells to the dorsal aortae.
View Article and Find Full Text PDFParacrine signals, both positive and negative, regulate the positioning and remodeling of embryonic blood vessels. In the embryos of mammals and birds, the first major remodeling event is the fusion of bilateral dorsal aortae at the midline to form the dorsal aorta. Although the original bilaterality of the dorsal aortae occurs as the result of inhibitory factors (antagonists of BMP signaling) secreted from the midline by the notochord, it is unknown how fusion is later signaled.
View Article and Find Full Text PDFThe coronary vessels and epicardium arise from an extracardiac rudiment called the proepicardium. Failed fusion of the proepicardium to the heart results in severe coronary and heart defects. However, it is unknown how the proepicardium protrudes toward and attaches to the looping heart tube.
View Article and Find Full Text PDFKnowledge of the molecular mechanisms regulating cell ingression, epithelial-mesenchymal transition and migration movements during amniote gastrulation is steadily improving. In the frog and fish embryo, Wnt5 and Wnt11 ligands are expressed around the blastopore and play an important role in regulating cell movements associated with gastrulation. In the chicken embryo, although Wnt5a and Wnt5b are expressed in the primitive streak, the known Wnt11 gene is expressed in paraxial and intermediate mesoderm, and in differentiated myocardial cells, but not in the streak.
View Article and Find Full Text PDFIt is generally believed that proteins of the troponin complex are not expressed in smooth muscle. We have directly assayed for expression of troponin transcripts in mouse vascular smooth muscle and found that troponin sequences normally associated with fast twitch skeletal muscle (fTnT, fTnI, fTnC) were present at significant levels in the thoracic aorta. In situ hybridization experiments demonstrated that fTnT, fTnI and fTnC transcripts were expressed in the smooth muscle layer of mouse blood vessels of all sizes.
View Article and Find Full Text PDFThe Wnt family of growth factors regulate many different aspects of embryonic development. Assembly of the complete mouse and human genome sequences, plus expressed sequence tag surveys have established the existence of 19 Wnt genes in mammalian genomes. However, despite the importance of model vertebrates for studies in developmental biology, the complete complement of Wnt genes has not been established for nonmammalian genomes.
View Article and Find Full Text PDFIn the frog embryo, a sub-population of trunk neural crest (NC) cells undergoes a dorsal route of migration to contribute to the mesenchyme in the core of the dorsal fin. Here we show that a second population of cells, originally located in the dorsomedial region of the somite, also contributes to the fin mesenchyme. We find that the frog orthologue of Wnt11 (Wnt11-R) is expressed in both the NC and somite cell populations that migrate into the fin matrix.
View Article and Find Full Text PDFMyosin heavy chains (MHC) are cytoskeletal motor proteins essential to the process of muscle contraction. We have determined the complete sequences of the Xenopus cardiac MHC genes, alpha-MHC and ventricular MHC (vMHC), and have characterized their developmental expression profiles. Whereas alpha-MHC is expressed from the earliest stages of cardiac differentiation, vMHC transcripts are not detected until the heart has undergone chamber formation.
View Article and Find Full Text PDFWnt11 is a secreted protein that signals through the non-canonical planar cell polarity pathway and is a potent modulator of cell behavior and movement. In human, mouse, and chicken, there is a single Wnt11 gene, but in zebrafish and Xenopus, there are two genes related to Wnt11. The originally characterized Xenopus Wnt11 gene is expressed during early embryonic development and has a critical role in regulation of gastrulation movements.
View Article and Find Full Text PDFNormal development of the cardiac atrioventricular (AV) endocardial cushions is essential for proper ventricular septation and morphogenesis of the mature mitral and tricuspid valves. In this study, we demonstrate spatially restricted expression of both Wnt-9a (formerly Wnt-14) and the secreted Wnt antagonist Frzb in AV endocardial cushions of the developing chicken heart. Wnt-9a expression is detected only in AV canal endocardial cells, while Frzb expression is detected in both endocardial and transformed mesenchymal cells of the developing AV cardiac cushions.
View Article and Find Full Text PDFThe region with the potential to form the heart has traditionally been called the heart field. This region can be approximated by, but is not identical to, the expression domain of the early cardiac gene Nkx2.5.
View Article and Find Full Text PDFCardiac troponin T (cTNT) is a component of the troponin complex, which confers calcium sensitivity to contraction in skeletal and cardiac muscle. Although it is thought that most components of the contractile myofibril are expressed exclusively in differentiated muscle cells, we observed that mRNAs coding for cTNT were detectable in explanted late gastrula mesoderm at least 12 hr before cardiac myocyte differentiation. We therefore conducted a detailed analysis of cTNT gene expression in the early chick embryo.
View Article and Find Full Text PDF