Publications by authors named "Robert J Frick"

The quantum mechanical charge field molecular dynamics (QMCF-MD) framework was applied in a simulation of the uranyl(v) ion in aqueous solution. The structure was evaluated on the basis of overall and sectorial radial distribution functions, angular distribution functions, tilt- and Theta-angle distribution functions and coordination number distributions. The cation is strongly coordinated by 4 water ligands at an average distance of 2.

View Article and Find Full Text PDF

A comprehensive theoretical investigation on the structure and dynamics of the UO(2)(2+) ion in aqueous solution using double-zeta HF level quantum mechanical charge field molecular dynamics is presented. The quantum mechanical region includes two full layers of hydration and is embedded in a large box of explicitly treated water to achieve a realistic environment. A number of different functions, including segmential, radial, and angular distribution functions, are employed together with tilt- and Theta-angle distribution functions to describe the complex structural properties of this ion.

View Article and Find Full Text PDF

The structure and dynamics of the stable four-times positively charged uranium(IV) cation in aqueous solution have been investigated by ab initio quantum mechanical charge field (QMCF) molecular dynamics (MD) simulation at the Hartree-Fock double-zeta quantum mechanical level. The QMCF-MD approach enables investigations with the accuracy of a quantum mechanics/molecular mechanics approach without the need for the construction of solute-solvent potentials. Angular distribution functions; radial distribution functions; coordination numbers of the first, second, and third shell (9, 19, and 44, respectively); coordination number distribution functions; tilt- and Theta-angle distribution functions; as well as local density corrected triangle distribution functions have been employed for the evaluation of the hydrated ion's structure.

View Article and Find Full Text PDF