After serving the Dictyostelium community for many years, the first version of dictyBase (Chisholm et al., 2006; Fey et al., 2006) was in need of a decisive update.
View Article and Find Full Text PDFdictyBase is the model organism database for the social amoeba Dictyostelium discoideum and related species. The primary mission of dictyBase is to provide the biomedical research community with well-integrated high quality data, and tools that enable original research. Data presented at dictyBase is obtained from sequencing centers, groups performing high throughput experiments such as large-scale mutagenesis studies, and RNAseq data, as well as a growing number of manually added functional gene annotations from the published literature, including Gene Ontology, strain, and phenotype annotations.
View Article and Find Full Text PDFdictyBase (http://dictybase.org), the model organism database for Dictyostelium discoideum, includes the complete genome sequence and expression data for this organism. Relevant literature is integrated into the database, and gene models and functional annotation are manually curated from experimental results and comparative multigenome analyses.
View Article and Find Full Text PDFCharProtDB (http://www.jcvi.org/charprotdb/) is a curated database of biochemically characterized proteins.
View Article and Find Full Text PDFPathema (http://pathema.jcvi.org) is one of the eight Bioinformatics Resource Centers (BRCs) funded by the National Institute of Allergy and Infectious Disease (NIAID) designed to serve as a core resource for the bio-defense and infectious disease research community.
View Article and Find Full Text PDFThe complete genomes of three strains from the phylum Acidobacteria were compared. Phylogenetic analysis placed them as a unique phylum. They share genomic traits with members of the Proteobacteria, the Cyanobacteria, and the Fungi.
View Article and Find Full Text PDFBackground: Acidithiobacillus ferrooxidans is a major participant in consortia of microorganisms used for the industrial recovery of copper (bioleaching or biomining). It is a chemolithoautrophic, gamma-proteobacterium using energy from the oxidation of iron- and sulfur-containing minerals for growth. It thrives at extremely low pH (pH 1-2) and fixes both carbon and nitrogen from the atmosphere.
View Article and Find Full Text PDFWe report here the sequencing and analysis of the genome of the nitrogen-fixing endophyte, Klebsiella pneumoniae 342. Although K. pneumoniae 342 is a member of the enteric bacteria, it serves as a model for studies of endophytic, plant-bacterial associations due to its efficient colonization of plant tissues (including maize and wheat, two of the most important crops in the world), while maintaining a mutualistic relationship that encompasses supplying organic nitrogen to the host plant.
View Article and Find Full Text PDFThe dimorphic prosthecate bacteria (DPB) are alpha-proteobacteria that reproduce in an asymmetric manner rather than by binary fission and are of interest as simple models of development. Prior to this work, the only member of this group for which genome sequence was available was the model freshwater organism Caulobacter crescentus. Here we describe the genome sequence of Hyphomonas neptunium, a marine member of the DPB that differs from C.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
September 2006
Coastal aquatic environments are typically more highly productive and dynamic than open ocean ones. Despite these differences, cyanobacteria from the genus Synechococcus are important primary producers in both types of ecosystems. We have found that the genome of a coastal cyanobacterium, Synechococcus sp.
View Article and Find Full Text PDFClostridium perfringens is a Gram-positive, anaerobic spore-forming bacterium commonly found in soil, sediments, and the human gastrointestinal tract. C. perfringens is responsible for a wide spectrum of disease, including food poisoning, gas gangrene (clostridial myonecrosis), enteritis necroticans, and non-foodborne gastrointestinal infections.
View Article and Find Full Text PDFAnaplasma (formerly Ehrlichia) phagocytophilum, Ehrlichia chaffeensis, and Neorickettsia (formerly Ehrlichia) sennetsu are intracellular vector-borne pathogens that cause human ehrlichiosis, an emerging infectious disease. We present the complete genome sequences of these organisms along with comparisons to other organisms in the Rickettsiales order. Ehrlichia spp.
View Article and Find Full Text PDFWe report here the sequencing and analysis of the genome of the thermophilic bacterium Carboxydothermus hydrogenoformans Z-2901. This species is a model for studies of hydrogenogens, which are diverse bacteria and archaea that grow anaerobically utilizing carbon monoxide (CO) as their sole carbon source and water as an electron acceptor, producing carbon dioxide and hydrogen as waste products. Organisms that make use of CO do so through carbon monoxide dehydrogenase complexes.
View Article and Find Full Text PDFThe development of efficient and inexpensive genome sequencing methods has revolutionized the study of human bacterial pathogens and improved vaccine design. Unfortunately, the sequence of a single genome does not reflect how genetic variability drives pathogenesis within a bacterial species and also limits genome-wide screens for vaccine candidates or for antimicrobial targets. We have generated the genomic sequence of six strains representing the five major disease-causing serotypes of Streptococcus agalactiae, the main cause of neonatal infection in humans.
View Article and Find Full Text PDFThe completion of the 5,373,180-bp genome sequence of the marine psychrophilic bacterium Colwellia psychrerythraea 34H, a model for the study of life in permanently cold environments, reveals capabilities important to carbon and nutrient cycling, bioremediation, production of secondary metabolites, and cold-adapted enzymes. From a genomic perspective, cold adaptation is suggested in several broad categories involving changes to the cell membrane fluidity, uptake and synthesis of compounds conferring cryotolerance, and strategies to overcome temperature-dependent barriers to carbon uptake. Modeling of three-dimensional protein homology from bacteria representing a range of optimal growth temperatures suggests changes to proteome composition that may enhance enzyme effectiveness at low temperatures.
View Article and Find Full Text PDFPseudomonas fluorescens Pf-5 is a plant commensal bacterium that inhabits the rhizosphere and produces secondary metabolites that suppress soilborne plant pathogens. The complete sequence of the 7.1-Mb Pf-5 genome was determined.
View Article and Find Full Text PDFStaphylococcus aureus is an opportunistic pathogen and the major causative agent of numerous hospital- and community-acquired infections. Staphylococcus epidermidis has emerged as a causative agent of infections often associated with implanted medical devices. We have sequenced the approximately 2.
View Article and Find Full Text PDFSequencing and comparative genome analysis of four strains of Campylobacter including C. lari RM2100, C. upsaliensis RM3195, and C.
View Article and Find Full Text PDFDehalococcoides ethenogenes is the only bacterium known to reductively dechlorinate the groundwater pollutants, tetrachloroethene (PCE) and trichloroethene, to ethene. Its 1,469,720-base pair chromosome contains large dynamic duplicated regions and integrated elements. Genes encoding 17 putative reductive dehalogenases, nearly all of which were adjacent to genes for transcription regulators, and five hydrogenase complexes were identified.
View Article and Find Full Text PDFSince the recognition of prokaryotes as essential components of the oceanic food web, bacterioplankton have been acknowledged as catalysts of most major biogeochemical processes in the sea. Studying heterotrophic bacterioplankton has been challenging, however, as most major clades have never been cultured or have only been grown to low densities in sea water. Here we describe the genome sequence of Silicibacter pomeroyi, a member of the marine Roseobacter clade (Fig.
View Article and Find Full Text PDFMethanotrophs are ubiquitous bacteria that can use the greenhouse gas methane as a sole carbon and energy source for growth, thus playing major roles in global carbon cycles, and in particular, substantially reducing emissions of biologically generated methane to the atmosphere. Despite their importance, and in contrast to organisms that play roles in other major parts of the carbon cycle such as photosynthesis, no genome-level studies have been published on the biology of methanotrophs. We report the first complete genome sequence to our knowledge from an obligate methanotroph, Methylococcus capsulatus (Bath), obtained by the shotgun sequencing approach.
View Article and Find Full Text PDFThe genomes of three strains of Listeria monocytogenes that have been associated with food-borne illness in the USA were subjected to whole genome comparative analysis. A total of 51, 97 and 69 strain-specific genes were identified in L.monocytogenes strains F2365 (serotype 4b, cheese isolate), F6854 (serotype 1/2a, frankfurter isolate) and H7858 (serotype 4b, meat isolate), respectively.
View Article and Find Full Text PDFDesulfovibrio vulgaris Hildenborough is a model organism for studying the energy metabolism of sulfate-reducing bacteria (SRB) and for understanding the economic impacts of SRB, including biocorrosion of metal infrastructure and bioremediation of toxic metal ions. The 3,570,858 base pair (bp) genome sequence reveals a network of novel c-type cytochromes, connecting multiple periplasmic hydrogenases and formate dehydrogenases, as a key feature of its energy metabolism. The relative arrangement of genes encoding enzymes for energy transduction, together with inferred cellular location of the enzymes, provides a basis for proposing an expansion to the 'hydrogen-cycling' model for increasing energy efficiency in this bacterium.
View Article and Find Full Text PDFWe present the complete 2,843,201-bp genome sequence of Treponema denticola (ATCC 35405) an oral spirochete associated with periodontal disease. Analysis of the T. denticola genome reveals factors mediating coaggregation, cell signaling, stress protection, and other competitive and cooperative measures, consistent with its pathogenic nature and lifestyle within the mixed-species environment of subgingival dental plaque.
View Article and Find Full Text PDF