Rapid and early identification of emergent infections is essential for delivering prompt clinical care. To advance the development of algorithms for the clinical management of infection identification, we performed a vaccination clinical trial to investigate the potential of using vaccination as a model for studying mild inflammation responses associated with different infections (NCT05346302). We collected data at various time points over 4 weeks from blood samples, wearable devices, and questionnaires.
View Article and Find Full Text PDFTo aid in predicting and improving treatment outcome of endovascular coiling of intracranial aneurysms, simulation of patient-specific coil deployment should be both accurate and fast. We developed a fast virtual coiling algorithm called Pre-shape Path Planning (P3). It captures the mechanical propensity of a released coil to restore its pre-shape for bending energy minimization, producing coils without unrealistic kinks and bends.
View Article and Find Full Text PDFBackground And Objective: Long non-coding RNAs (lncRNAs) may serve as biomarkers for complex disease states, such as intracranial aneurysms. In this study, we investigated lncRNA expression differences in the whole blood of patients with unruptured aneurysms.
Methods: Whole blood RNA from 67 subjects (34 with aneurysm, 33 without) was used for next-generation RNA sequencing.
Background: Endovascular treatment of intracranial aneurysms (IAs) by flow diverter (FD) stents depends on flow modification. Patient-specific modeling of FD deployment and computational fluid dynamics (CFD) could enable a priori endovascular strategy optimization. We developed a fast, simplistic, expansion-free balls-weeping algorithm to model FDs in patientspecific aneurysm geometry.
View Article and Find Full Text PDFBackground: Computer modeling of endovascular coiling intervention for intracranial aneurysm could enable a priori patient-specific treatment evaluation. To that end, we previously developed a finite element method (FEM) coiling technique, which incorporated simplified assumptions. To improve accuracy in capturing real-life coiling, we aimed to enhance the modeling strategies and experimentally test whether improvements lead to more accurate coiling simulations.
View Article and Find Full Text PDFBackground: Recurrence of intracranial aneurysms after endovascular coiling is a serious clinical concern.
Objective: We hypothesized that recurrence is associated with aneurysm morphology and flow, as well as the coil intervention and the induced flow modifications.
Methods: We collected 52 primary-coiling aneurysm cases that were either occluded (n=34) or recurrent (n=18) at >1 year follow-up.
Endovascular coiling is a primary treatment for intra-cranial aneurysm, which deploys a thin and detachable metal wire inside the aneurysm so as to prevent its rupture. Emerging evidence from medical research and clinical practice has suggested that the coil configuration inside the aneurysm plays a vital role in properly treating aneurysm and predicting its outcome. In this paper, we propose a novel virtual coiling technique, called , for generating a coil configuration with ensured blocking ability.
View Article and Find Full Text PDFComputational fluid dynamics (CFD) is a promising tool to aid in clinical diagnoses of cardiovascular diseases. However, it uses assumptions that simplify the complexities of the real cardiovascular flow. Due to high-stakes in the clinical setting, it is critical to calculate the effect of these assumptions in the CFD simulation results.
View Article and Find Full Text PDFTreatment of intracranial aneurysms (IAs) has been revolutionized by the advent of endovascular Flow Diverters (FDs), which disrupt blood flow within the aneurysm to induce pro-thrombotic conditions, and serves as a scaffold for endothelial ingrowth and arterial remodeling. Despite good clinical success of FDs, complications like incomplete occlusion and post-treatment rupture leading to subarachnoid hemorrhage have been reported. computational fluid dynamic analysis of the pre- and post-treated geometries of IA patients can shed light on the contrasting blood hemodynamics associated with different clinical outcomes.
View Article and Find Full Text PDFEndovascular interventions using coil embolization and flow diversion are becoming the mainstream treatment for intracranial aneurysms (IAs). To help assess the effect of intervention strategies on aneurysm hemodynamics and treatment outcome, we have developed a finite-element-method (FEM)-based technique for coil deployment along with our HiFiVS technique for flow diverter (FD) deployment in patient-specific IAs. We tested four clinical intervention strategies: coiling (1-8 coils), single FD, FD with adjunctive coils (1-8 coils), and overlapping FDs.
View Article and Find Full Text PDFObject: Flow diversion via Pipeline Embolization Device (PED) represents the most recent advancement in endovascular therapy of intracranial aneurysms. This exploratory study aims at a proof of concept for an advanced device-modeling tool in conjunction with computational fluid dynamics (CFD) to evaluate flow modification effects by PED in actual, treated cases.
Methods: The authors performed computational modeling of 3 PED-treated complex aneurysm cases.