The continuing demand for agrochemical insecticides that can meet increasing grower, environmental, consumer and regulatory requirements creates the need for the development of new solutions for managing crop pest insects. The development of resistance to the currently available insecticidal products adds another critical driver for new insecticidal active ingredients (AIs). One avenue to meeting these challenges is the creation of new classes of insecticidal molecules to act as starting points and prototypes stimulating further spectrum, efficacy and environmental impact refinements.
View Article and Find Full Text PDFPest Manag Sci
February 2022
Natural products (NPs) have long been an important source of, and inspiration for, developing novel compounds to control weeds, pathogens and insect pests. In this review, we use a dataset of 800 historic, current and emerging crop protection compounds to explore the influence of NPs on the introduction of new crop protection compounds (fungicides, herbicides, insecticides) as a function of time. NPs, their semisynthetic derivatives (NPDs) and compounds inspired by NPs (NP mimics, NPMs) account for 17% of all crop protection compounds.
View Article and Find Full Text PDFPest Manag Sci
October 2021
The efficient production of the food needed to nourish an expanding global population continues to fuel the demand for new crop protection compounds. This task is made all the more difficult by the need to meet increasingly demanding grower, consumer and regulatory constraints. The discovery and development of new synthetic organic crop protection compounds has been largely the responsibility of the agrochemical industry in Europe, Japan and the USA, with government-funded academic research often playing a crucial role in the early stages of the invention and testing of novel activity.
View Article and Find Full Text PDFThe Industry responsible for the discovery and development of crop protection compounds has undergone dramatic changes and increasing consolidation since the initial innovations in synthetic organic fungicides, herbicides and insecticides in the late 1940s and early 1950s. Likewise, there have been striking changes in the rate of introduction of new crop protection compounds over the past 70 years. While numerous studies over the past five decades have signaled the ongoing decline in the numbers of new active ingredients (AIs), a detailed analysis of the trends in the rate of introduction of crop protection compounds shows a more complex pattern in the overall output of new AIs.
View Article and Find Full Text PDFCurrent crop protection chemicals span an array of chemistry classes and modes of action. Typically, within each chemistry class, there are multiple chemically distinct active ingredients competing with each other for market position. In this competition, the first product to market in a new class or mode of action may or may not have an advantage depending upon a number of parameters, including relative efficacy against the target pests, pest resistance, regulatory pressures, synthetic complexity, and marketing effectiveness.
View Article and Find Full Text PDFEveryone is affected directly or indirectly by pesticide use and safety. The magnitude and perception of this effect depend on one's individual involvement or vantage point. The researcher seeks discovery and the entrepreneur goes after financial rewards.
View Article and Find Full Text PDF