Publications by authors named "Robert J Barsotti"

The current research work presents a first attempt to investigate the welding attributes of Elium thermoplastic resin and the fusion bonding using ultrafast ultrasonic welding technique. The integrated energy director (ED) polymer-matrix composites (PMCs) panel manufacturing was carried out using the Resin Transfer Moulding (RTM) technique and the scheme is deduced to manufacture a bubble-free panel. Integrated ED configurations and flat specimens with Elium film of different thickness at the interface were investigated for ultrasonic welding optimization.

View Article and Find Full Text PDF

Joining large and complex polymer-matrix composite structures is becoming increasingly important in industries such as automobiles, aerospace, sports, wind turbines, and others. Ultrasonic welding is an ultra-fast joining process and also provides excellent joint quality as a cost-effective alternative to other joining processes. This research aims at investigating the welding characteristics of novel methyl methacrylate Elium, a liquid thermoplastic resin.

View Article and Find Full Text PDF

Several studies have indicated that diaphragm dysfunction develops in patients on mechanical ventilation (MV). Here, we tested the hypothesis that the contractility of sarcomeres, i.e.

View Article and Find Full Text PDF

The directed assembly of nanoparticles and nanoscale materials onto specific locations of a surface is one of the major challenges in nanotechnology. Here we present a simple and scalable method and model for the assembly of nanoparticles in between electrical leads. Gold nanoparticles, 20 nm in diameter, were assembled inside electrical gaps ranging from 15 to 150 nm with the use of positive ac dielectrophoresis.

View Article and Find Full Text PDF

Photochemical uncaging of bio-active molecules was introduced in 1977, but since then, there has been no substantial improvement in the properties of generic caging chromophores. We have developed a new chromophore, nitrodibenzofuran (NDBF) for ultra-efficient uncaging of second messengers inside cells. Photolysis of a NDBF derivative of EGTA (caged calcium) is about 16-160 times more efficient than photolysis of the most widely used caged compounds (the quantum yield of photolysis is 0.

View Article and Find Full Text PDF

The physico-chemical properties of several Ca(2+)-selective, photolabile chelators are described. These molecules have been developed as part of an effort to produce a caged Ca(2+) that improved upon the Ca(2+) chelation properties and light absorption capability of nitrophenyl-EGTA (NP-EGTA). Four dimethoxy-ortho-nitrophenyl derivatives of EGTA (called DMNPE-1 through -4), and one analogue of EGTA (DMNPE-5) have been characterized, each of which is bisected upon irradiation.

View Article and Find Full Text PDF

A genetically engineered cardiac TnC mutant labeled at Cys-84 with tetramethylrhodamine-5-iodoacetamide dihydroiodide was passively exchanged for the endogenous form in skinned guinea pig trabeculae. The extent of exchange averaged nearly 70%, quantified by protein microarray of individual trabeculae. The uniformity of its distribution was verified by confocal microscopy.

View Article and Find Full Text PDF

Here, we describe the effect of writing speed in dip pen nanolithography on the morphology (height and density) of self-assembled monolayers of alkanethiols on gold surfaces. The analysis of atomic force microscopy images of written monolayers shows that molecules assemble according to a nucleation and growth mechanism. Slow writing speeds lead to dense monolayers that can be used either to direct the self-assembly of metal nanoparticles or as masks for selective etching of conductive gold nanowires.

View Article and Find Full Text PDF

The kinetics of Ca(2+)-induced contractions of chemically skinned guinea pig trabeculae was studied using laser photolysis of NP-EGTA. The amount of free Ca(2+) released was altered by varying the output from a frequency-doubled ruby laser focused on the trabeculae, while maintaining constant total [NP-EGTA] and [Ca(2+)]. The time courses of the rise in stiffness and tension were biexponential at 23 degrees C, pH 7.

View Article and Find Full Text PDF

Smooth muscle cells undergo substantial increases in length, passively stretching during increases in intraluminal pressure in vessels and hollow organs. Active contractile responses to counteract increased transmural pressure were first described almost a century ago (Bayliss, 1902) and several mechanisms have been advanced to explain this phenomenon. We report here that elongation of smooth muscle cells results in ryanodine receptor-mediated Ca(2+) release in individual myocytes.

View Article and Find Full Text PDF