Colorectal cancer (CRC) is the third most prevalent cancer worldwide with a high mortality rate (20-30%), especially due to metastasis to adjacent organs. Clinical responses to chemotherapy, radiation, targeted and immunotherapies are limited to a subset of patients making metastatic CRC (mCRC) difficult to treat. To understand the therapeutic modulation of immune response in mCRC, we have used a genetically engineered mouse model (GEMM), "KPN", which resembles the human 'CMS4'-like subtype.
View Article and Find Full Text PDFThe intestinal lamina propria contains a diverse network of fibroblasts that provide key support functions to cells within their local environment. Despite this, our understanding of the diversity, location and ontogeny of fibroblasts within and along the length of the intestine remains incomplete. Here we show that the small and large intestinal lamina propria contain similar fibroblast subsets that locate in specific anatomical niches.
View Article and Find Full Text PDFIntravital microscopy and other direct-imaging techniques have allowed for a characterisation of leukocyte migration that has revolutionised the field of immunology, resulting in an unprecedented understanding of the mechanisms of immune response and adaptive immunity. However, there is an assumption within the field that modern imaging techniques permit imaging parameters where the resulting cell track accurately captures a cell's motion. This notion is almost entirely untested, and the relationship between what could be observed at a given scale and the underlying cell behaviour is undefined.
View Article and Find Full Text PDFProinflammatory responses induced by Toll-like receptors (TLRs) are dependent on the activation of the NF-ĸB and mitogen-activated protein kinase (MAPK) pathways, which coordinate the transcription and synthesis of proinflammatory cytokines. We demonstrate that BCL-3, a nuclear IĸB protein that regulates NF-ĸB, also controls TLR-induced MAPK activity by regulating the stability of the TPL-2 kinase. TPL-2 is essential for MAPK activation by TLR ligands, and the rapid proteasomal degradation of active TPL-2 is a critical mechanism limiting TLR-induced MAPK activity.
View Article and Find Full Text PDFInflammatory bowel disease (IBD) is a debilitating chronic inflammatory disease of the gastrointestinal (GI) tract. It affects more than 3.5 million people in the western world and places a huge financial burden on healthcare systems.
View Article and Find Full Text PDFHomeostatic leukocyte trafficking into and within the female reproductive tract (FRT) contributes to fertility and reproductive health. It is unclear how this process is regulated in the anatomically distinct reproductive tissues, or whether the genes involved are affected by cyclical changes in reproductive hormones. In tissues such as skin and intestine, mouse studies have defined evolutionarily conserved molecular mechanisms for tissue-specific homing, interstitial positioning, and leukocyte egress.
View Article and Find Full Text PDFGreater understanding of tumour immunobiology has led to a new era of cancer treatment in which immuno-oncology (IO) therapies are used to boost anti-cancer immune responses. Prominent among these therapies are immune checkpoint inhibitors (ICIs), antibody-based drugs that can unleash the power of tumour-specific CD8 + T-cells. ICIs targeting the Programmed cell death protein 1 (PD-1) cell surface receptor or its ligand PD-L1 are particularly effective, with clinical studies reporting powerful and durable therapeutic impact against many cancer types, including melanoma and non-small cell lung cancer.
View Article and Find Full Text PDFCurr Opin Biomed Eng
March 2018
Leukocyte migration is critically important during all protective and pathological immune and inflammatory responses. Chemokines play fundamental roles in this process, and chemokine concentration gradients stimulate the directional migration of leukocytes. The formation and regulation of these gradients is poorly understood.
View Article and Find Full Text PDFChemokines have been shown to be essential players in a range of cancer contexts. In this study, we demonstrate that mice deficient in the atypical chemokine receptor Ackr2 display impaired development of metastasis in vivo in both cell line and spontaneous models. Further analysis reveals that this relates to increased expression of the chemokine receptor CCR2, specifically by KLRG1 NK cells from the Ackr2 mice.
View Article and Find Full Text PDFLiver injury results in rapid regeneration through hepatocyte proliferation and hypertrophy. However, after acute severe injury, such as acetaminophen poisoning, effective regeneration may fail. We investigated how senescence may underlie this regenerative failure.
View Article and Find Full Text PDFJ Immunol
July 2018
Atypical chemokine receptors (ACKRs) are expressed by discrete populations of stromal cells at specific anatomical locations where they control leukocyte migration by scavenging or transporting chemokines. ACKR4 is an atypical receptor for CCL19, CCL21, and CCL25. In skin, ACKR4 plays indispensable roles in regulating CCR7-dependent APC migration, and there is a paucity of migratory APCs in the skin-draining lymph nodes of -deficient mice under steady-state and inflammatory conditions.
View Article and Find Full Text PDFThe chemokines (or chemotactic cytokines) are a large family of small, secreted proteins that signal through cell surface G protein-coupled heptahelical chemokine receptors. They are best known for their ability to stimulate the migration of cells, most notably white blood cells (leukocytes). Consequently, chemokines play a central role in the development and homeostasis of the immune system, and are involved in all protective or destructive immune and inflammatory responses.
View Article and Find Full Text PDFThe environment for embryo implantation and fetal growth and development is affected by maternal nutritional, metabolic and health status. The aim of this prospective, cohort study was to test whether plasma metabolic and inflammatory biomarkers can predict pregnancy resulting from in vitro fertilisation (IVF). Women with a natural menstrual cycle undergoing frozen embryo transfer (FET) were recruited and fasting baseline blood samples were collected a mean of 3.
View Article and Find Full Text PDFThe chemokine receptor CCR7 drives leukocyte migration into and within lymph nodes (LNs). It is activated by chemokines CCL19 and CCL21, which are scavenged by the atypical chemokine receptor ACKR4. CCR7-dependent navigation is determined by the distribution of extracellular CCL19 and CCL21, which form concentration gradients at specific microanatomical locations.
View Article and Find Full Text PDFSalmonella Typhimurium causes a self-limiting gastroenteritis that may lead to systemic disease. Bacteria invade the small intestine, crossing the intestinal epithelium from where they are transported to the mesenteric lymph nodes (MLNs) within migrating immune cells. MLNs are an important site at which the innate and adaptive immune responses converge but their architecture and function is severely disrupted during S.
View Article and Find Full Text PDFCXCR2 has been suggested to have both tumor-promoting and tumor-suppressive properties. Here we show that CXCR2 signaling is upregulated in human pancreatic cancer, predominantly in neutrophil/myeloid-derived suppressor cells, but rarely in tumor cells. Genetic ablation or inhibition of CXCR2 abrogated metastasis, but only inhibition slowed tumorigenesis.
View Article and Find Full Text PDFBcl-3 is a member of the IκB family of proteins and an important regulator of Nuclear Factor (NF)-κB activity. The ability of Bcl-3 to bind and regulate specific NF-κB dimers has been studied in great depth, but its physiological roles in vivo are still not fully understood. It is, however, becoming clear that Bcl-3 is essential for the proper development, survival and activity of adaptive immune cells.
View Article and Find Full Text PDFDermal dendritic cells and epidermal Langerhans cells are APCs that migrate from skin to draining lymph nodes (LN) to drive peripheral tolerance and adaptive immunity. Their migration requires the chemokine receptor CCR7, which directs egress from the skin via dermal lymphatic vessels and extravasation into the LN parenchyma from lymph in the subcapsular sinus. CCR7 is activated by two chemokines: CCL19 and CCL21.
View Article and Find Full Text PDFContext: Docosahexaenoic acid (DHA) is an important fatty acid required for neurological development but its importance during early fetal neurological organogenesis is unknown.
Objective: This study aimed to assess plasma fatty acid changes in early pregnancy in women undergoing natural cycle-frozen embryo transfer as a means of achieving accurately timed periconceptual sampling.
Design: Women undergoing frozen embryo transfer were recruited and serial fasting blood samples were taken pre-luteinizing hormone (LH) surge, and at 18, 29, and 45 d post-LH surge and fatty acids were analyzed using gas chromatography.
Focal adhesion kinase (FAK) promotes anti-tumor immune evasion. Specifically, the kinase activity of nuclear-targeted FAK in squamous cell carcinoma (SCC) cells drives exhaustion of CD8(+) T cells and recruitment of regulatory T cells (Tregs) in the tumor microenvironment by regulating chemokine/cytokine and ligand-receptor networks, including via transcription of Ccl5, which is crucial. These changes inhibit antigen-primed cytotoxic CD8(+) T cell activity, permitting growth of FAK-expressing tumors.
View Article and Find Full Text PDFPancreatitis is a significant clinical problem and the lack of effective therapeutic options means that treatment is often palliative rather than curative. A deeper understanding of the pathogenesis of both acute and chronic pancreatitis is necessary to develop new therapies. Pathological changes in pancreatitis are dependent on innate immune cell recruitment to the site of initial tissue damage, and on the coordination of downstream inflammatory pathways.
View Article and Find Full Text PDFPurpose Of Review: To provide an update of past failures, future prospects and key challenges facing the therapeutic targeting of chemokines and their receptors in rheumatoid arthritis.
Recent Findings: Clinical trials in rheumatoid arthritis have been undertaken with small molecule antagonists or neutralizing antibodies targeting CCR1, CCR5 and CXCL10. Some encouraging results have emerged.
Thymus colonisation and thymocyte positioning are regulated by interactions between CCR7 and CCR9, and their respective ligands, CCL19/CCL21 and CCL25. The ligands of CCR7 and CCR9 also interact with the atypical receptor CCRL1 (also known as ACKR4), which is expressed in the thymus and has recently been reported to play an important role in normal αβT-cell development. Here, we show that CCRL1 is expressed within the thymic cortex, predominantly by MHC-II(low) CD40(-) cortical thymic epithelial cells and at the subcapsular zone by a population of podoplanin(+) thymic epithelial cells in mice.
View Article and Find Full Text PDFChemokine-directed leukocyte migration is a critical component of all innate and adaptive immune responses. The atypical chemokine receptor ACKR2 is expressed by lymphatic endothelial cells and scavenges pro-inflammatory CC chemokines to indirectly subdue leukocyte migration. This contributes to the resolution of acute inflammatory responses in vivo.
View Article and Find Full Text PDFInflammatory chemokines produced in the placenta can direct the migration of placental leukocytes using chemokine receptors that decorate the surface of these cells. Fetal trophoblasts can also express receptors for inflammatory chemokines, and they are one of the few cell types that express atypical chemokine receptor 2 (ACKR2), previously known as D6. ACKR2 binds many inflammatory CC chemokines but cannot stimulate cell migration or activate signaling pathways used by conventional chemokine receptors.
View Article and Find Full Text PDF