Publications by authors named "Robert Ingham"

p28 is a poxvirus-encoded E3 ubiquitin ligase that possesses an N-terminal KilA-N domain and a C-terminal RING domain. In Ectromelia virus (ECTV), disruption of the p28 RING domain severely attenuated virulence in A strain mice, which normally succumb to ECTV infection. Moreover, this mutant virus exhibited dramatically reduced genome replication and impaired factory formation in A strain mice peritoneal macrophages (PMs) infected at high multiplicity of infection (MOI) These defects were not observed in PMs isolated from C57BL/6 mice which survive ECTV infection, demonstrating that p28 functions in a context-specific manner.

View Article and Find Full Text PDF

Poxviruses are double-stranded DNA viruses that infect insects and a variety of vertebrate species. The large genomes of poxviruses contain numerous genes that allow these viruses to successfully establish infection, including those that help evade the host immune response and prevent cell death. Ankyrin-repeat (ANKR)/F-box proteins are almost exclusively found in poxviruses, and they function as substrate adapters for Skp1-Cullin-1-F-box protein (SCF) multi-subunit E3 ubiquitin (Ub)-ligases.

View Article and Find Full Text PDF

Classical Hodgkin lymphoma (cHL) and anaplastic lymphoma kinase-positive, anaplastic large cell lymphoma (ALK+ ALCL) are B and T cell lymphomas respectively, which express the tumour necrosis factor receptor superfamily member, CD30. Another feature shared by cHL and ALK+ ALCL is the aberrant expression of multiple members of the activator protein-1 (AP-1) family of transcription factors which includes proteins of the Jun, Fos, ATF, and Maf subfamilies. In this review, we highlight the varied roles these proteins play in the pathobiology of these lymphomas including promoting proliferation, suppressing apoptosis, and evading the host immune response.

View Article and Find Full Text PDF

Classical Hodgkin Lymphoma (cHL) is primarily a B cell lymphoid neoplasm and a member of the CD30-positive lymphomas. cHL and the other CD30-positive lymphomas are characterized by the elevated expression and/or constitutive activation of the activator protein-1 (AP-1) family transcription factors, c-Jun and JunB; however, the specific roles they play in the pathobiology of cHL are unclear. In this report we show that reducing either c-Jun or JunB expression with short-hairpin RNAs (shRNAs) reduced the growth of cHL cell lines in vitro and in vivo, primarily through impairing cell cycle transition through G.

View Article and Find Full Text PDF

We describe a new stereotypical acoustic behaviour by male mosquitoes in response to the fundamental frequency of female flight tones during mating sequences. This male-specific free-flight behaviour consists of phonotactic flight beginning with a steep increase in wing-beat frequency (WBF) followed by rapid frequency modulation (RFM) of WBF in the lead up to copula formation. Male RFM behaviour involves remarkably fast changes in WBF and can be elicited without acoustic feedback or physical presence of the female.

View Article and Find Full Text PDF

Background: The serine protease Granzyme B (GzB) is primarily expressed by cytotoxic T lymphocytes and natural killer cells, and functions in allowing these cells to induce apoptosis in virally-infected or transformed cells. Cancers of both lymphoid and non-lymphoid origin also express GzB, and in some cases this expression has been linked to pathogenesis or sensitizing tumour cells to cell death. For example, GzB expression in urothelial carcinoma was implicated in promoting tumour cell invasion, whereas its expression in nasal-type NK/T lymphomas was found to correlate with increased apoptosis.

View Article and Find Full Text PDF

The activator protein-1 (AP-1) family transcription factor, JunB, is an important regulator of proliferation, apoptosis, differentiation, and the immune response. In this report, we show that JunB is cleaved in a caspase-dependent manner in apoptotic anaplastic lymphoma kinase-positive, anaplastic large cell lymphoma cell lines and that ectopically expressed JunB is cleaved in murine RAW 264.7 macrophage cells treated with the NALP1b inflammasome activator, anthrax lethal toxin.

View Article and Find Full Text PDF

Extensive research has been carried out in the past two decades to study the pathobiology of nucleophosmin-anaplastic lymphoma kinase (NPM-ALK), which is an oncogenic fusion protein found exclusively in a specific type of T-cell lymphoid malignancy, namely ALK-positive anaplastic large cell lymphoma. Results from these studies have provided highly useful insights into the mechanisms by which a constitutively tyrosine kinase, such as NPM-ALK, promotes tumorigenesis. Several previous publications have comprehensively summarized the advances in this field.

View Article and Find Full Text PDF

The adaptor protein Amot130 scaffolds components of the Hippo pathway to promote the inhibition of cell growth. This study describes how Amot130 through binding and activating the ubiquitin ligase AIP4/Itch achieves these effects. AIP4 is found to bind and ubiquitinate Amot130 at residue Lys-481.

View Article and Find Full Text PDF

Our previous oligonucleotide array studies revealed that ALK-positive anaplastic large cell lymphoma (ALK(+)ALCL) express high levels of the disheveled proteins (Dvls), a family of proteins that is integral to the Wnt signaling pathways. In this study, we assessed whether the Dvls are important in the pathogenesis of ALK(+)ALCL. By Western blotting, Dvl-2 and Dvl-3 were found to be highly expressed in ALK(+)ALCL cell lines and patient samples.

View Article and Find Full Text PDF

Anaplastic lymphoma kinase (ALK) was first identified in 1994 with the discovery that the gene encoding for this kinase was involved in the t(2;5)(p23;q35) chromosomal translocation observed in a subset of anaplastic large cell lymphoma (ALCL). The NPM-ALK fusion protein generated by this translocation is a constitutively active tyrosine kinase, and much research has focused on characterizing the signalling pathways and cellular activities this oncoprotein regulates in ALCL. We now know about the existence of nearly 20 distinct ALK translocation partners, and the fusion proteins resulting from these translocations play a critical role in the pathogenesis of a variety of cancers including subsets of large B-cell lymphomas, nonsmall cell lung carcinomas, and inflammatory myofibroblastic tumours.

View Article and Find Full Text PDF

Sox2 (sex-determining region Y-box protein 2) is a transcription factor regulating pluripotency in embryonic stem cells. Sox2 is aberrantly expressed in breast and other cancers, though its biological significance remains widely unexplored. To understand the significance of this aberrancy, we assessed the transcription activity of Sox2 in two Sox2-expressing breast cancer cell lines, MCF7 and ZR751, using a lentiviral Sox2 GFP reporter vector.

View Article and Find Full Text PDF

Lymph node metastases are common in papillary thyroid cancer (PTC) and can be resistant to surgical extirpation or radioiodine ablation. We examined the role of platelet-derived growth factor receptor (PDGFR) in mediating lymph node metastases in PTC. Clinical specimens of PTC (n = 137) were surveyed in a tissue array and by western blots to examine the relationship between expression of the α and β subunits of PDGFR and lymph node metastases.

View Article and Find Full Text PDF

Background: Anaplastic lymphoma kinase-positive, anaplastic large cell lymphoma (ALK+ ALCL) is a T cell lymphoma defined by the presence of chromosomal translocations involving the ALK tyrosine kinase gene. These translocations generate fusion proteins (e.g.

View Article and Find Full Text PDF

The transcriptional factor Twist1 has been shown to play a key role in regulating epithelial mesenchymal transition, invasiveness and migratory properties in solid tumors. We found that Twist1 is aberrantly expressed in ALK-positive anaplastic large cell lymphoma (ALK+ALCL), a type of T-cell lymphoid malignancy. Using RT-PCR and Western blots, Twist1 was detectable in all 3 ALK+ALCL cell lines examined but absent in normal T-cells.

View Article and Find Full Text PDF

Anaplastic lymphoma kinase-positive, anaplastic large cell lymphoma (ALK+ ALCL) is an aggressive non-Hodgkin lymphoma of T/null immunophenotype that is most prevalent in children and young adults. The normal cellular counterpart of this malignancy is presumed to be the cytotoxic T lymphocyte (CTL), and this presumption is partly based on the observation that these tumour cells often express cytotoxic granules containing Granzyme B (GzB) and Perforin. Chromosomal translocations involving the gene encoding for the ALK tyrosine kinase are also characteristic of ALK+ ALCL, and the resulting fusion proteins (e.

View Article and Find Full Text PDF

It is well established that the tumorigenic potential of nucleophosmin (NPM)-anaplastic lymphoma kinase (ALK), an oncogenic tyrosine kinase, is dependent on its tyrosine phosphorylation. Using tandem affinity purification-mass spectrometry, we found evidence of phosphorylation of three serine residues of NPM-ALK (Serine¹³⁵, Serine¹⁶⁴ and Serine⁴⁹⁷) ectopically expressed in GP293 cells. Using a specific anti-phosphoserine antibody and immunoprecipitation, we confirmed the presence of serine phosphorylation of NPM-ALK in all three NPM-ALK-expressing cell lines examined.

View Article and Find Full Text PDF

The cytoplasmic tyrosine phosphatase SHP1 has been shown to inhibit the oncogenic fusion protein nucleophosmin (NPM)-anaplastic lymphoma kinase (ALK), and loss of SHP1 contributes to NPM-ALK-mediated tumorigenesis. In this study, we aimed to further understand how SHP1 interacts and regulates NPM-ALK. We employed an in vitro model in which GP293 cells were transfected with various combinations of NPM-ALK (or mutants) and SHP1 (or mutants) expression vectors.

View Article and Find Full Text PDF

Background: Alpha-sarcin is a protein toxin produced by Aspergillus giganteus. It belongs to a family of cytotoxic ribonucleases that inactivate the ribosome and inhibit protein synthesis. alpha-Sarcin cleaves a single phosphodiester bond within the RNA backbone of the large ribosomal subunit, which makes the ribosome unrecognizable to elongation factors and, in turn, blocks protein synthesis.

View Article and Find Full Text PDF

Kaposi's sarcoma-associated herpesvirus, also known as human herpesvirus 8, is closely associated with several cancers including Kaposi's sarcoma, primary effusion lymphoma, and multicentric Castleman's disease. The rightmost end of the KSHV genome encodes a protein, K15, with multiple membrane-spanning segments and an intracellular carboxy-terminal tail that contains several conserved motifs with the potential to recruit interaction domains (i.e.

View Article and Find Full Text PDF

CD2-associated protein (CD2AP) is a scaffold molecule that plays a critical role in the maintenance of the kidney filtration barrier. Little, however, is understood about its mechanism of function. We used mass spectrometry to identify CD2AP-interacting proteins.

View Article and Find Full Text PDF

Epstein-Barr virus (EBV) is the causative agent of infectious mononucleosis and is associated with several human malignancies. The EBV protein latent membrane protein 2A (LMP2A) promotes viral latency in memory B cells by interfering with B cell receptor signaling and provides a survival signal for mature B cells that have lost expression of surface immunoglobulin. The latter function has suggested that LMP2A may enhance the survival of EBV-positive tumors.

View Article and Find Full Text PDF

WW domains are protein modules that mediate protein-protein interactions through recognition of proline-rich peptide motifs and phosphorylated serine/threonine-proline sites. To pursue the functional properties of WW domains, we employed mass spectrometry to identify 148 proteins that associate with 10 human WW domains. Many of these proteins represent novel WW domain-binding partners and are components of multiprotein complexes involved in molecular processes, such as transcription, RNA processing, and cytoskeletal regulation.

View Article and Find Full Text PDF

Neuronal precursor cell-expressed developmentally downregulated 4 (Nedd4) is the prototypical protein in a family of E3 ubiquitin ligases that have a common domain architecture. They are comprised of a catalytic C-terminal HECT domain and N-terminal C2 domain and WW domains responsible for cellular localization and substrate recognition. These proteins are found throughout eukaryotes and regulate diverse biological processes through the targeted degradation of proteins that generally have a PPxY motif for WW domain recognition, and are found in the nucleus and at the plasma membrane.

View Article and Find Full Text PDF