Publications by authors named "Robert I Shekhter"

We present a theoretical design for a single-mode, truly subwavelength terahertz disk laser based on a nanocomposite gain medium comprising an array of normal-metal/ferromagnetic (FM) point contacts embedded in a thin dielectric layer. Stimulated emission of light occurs due to spin-flip relaxation of spin-polarized electrons injected from the FM side of the contacts. Ultrahigh electrical current densities in the contacts and a dielectric material with a large refractive index, neither condition being achievable in conventional semiconductor media, enables the thresholds of lasing to be overcome for the lowest-order modes of the disk, making single-mode operation possible.

View Article and Find Full Text PDF

Fullerene peapods, which are carbon nanotubes encapsulating fullerene molecules, can offer enhanced functionality with respect to empty nanotubes. Their prospective applications include, for example, data storage devices, single-electron transistors and spin-qubit arrays for quantum computing. However, the present incomplete understanding of how a nanotube is affected by entrapped fullerenes is an obstacle for peapods to reach their full potential in nanoscale electronic applications.

View Article and Find Full Text PDF

We consider a nanoelectromechanical Josephson junction, where a suspended nanowire serves as a superconducting weak link, and show that an applied dc bias voltage can result in suppression of the flexural vibrations of the wire. This cooling effect is achieved through the transfer of vibronic energy quanta first to voltage-driven Andreev states and then to extended quasiparticle electronic states. Our analysis, which is performed for a nanowire in the form of a metallic carbon nanotube and in the framework of the density matrix formalism, shows that such self-cooling is possible down to the ground state of the flexural vibration mode of the nanowire.

View Article and Find Full Text PDF

We have theoretically investigated electromechanical properties of freely suspended carbon nanotubes when a current is injected into the tubes using a scanning tunneling microscope. We show that a shuttle-like electromechanical instability can occur if the bias voltage exceeds a dissipation-dependent threshold value. An instability results in large amplitude vibrations of the carbon nanotube bending mode, which modify the current-voltage characteristics of the system.

View Article and Find Full Text PDF