Biotechnol Biofuels Bioprod
October 2024
Background: Lignin is an aromatic polymer deposited in secondary cell walls of higher plants to provide strength, rigidity, and hydrophobicity to vascular tissues. Due to its interconnections with cell wall polysaccharides, lignin plays important roles during plant growth and defense, but also has a negative impact on industrial processes aimed at obtaining monosaccharides from plant biomass. Engineering lignin offers a solution to this issue.
View Article and Find Full Text PDFThe rhizosphere constitutes a dynamic interface between plant hosts and their associated microbial communities. Despite the acknowledged potential for enhancing plant fitness by manipulating the rhizosphere, the engineering of the rhizosphere microbiome through inoculation has posed significant challenges. These challenges are thought to arise from the competitive microbial ecosystem where introduced microbes must survive, and the absence of adaptation to the specific metabolic and environmental demands of the rhizosphere.
View Article and Find Full Text PDFClimate change is globally affecting rainfall patterns, necessitating the improvement of drought tolerance in crops. is a relatively drought-tolerant cereal. Functional stay-green sorghum genotypes can maintain green leaf area and efficient grain filling during terminal post-flowering water deprivation, a period of ~10 weeks.
View Article and Find Full Text PDFPlant response to drought stress involves fungi and bacteria that live on and in plants and in the rhizosphere, yet the stability of these myco- and micro-biomes remains poorly understood. We investigate the resistance and resilience of fungi and bacteria to drought in an agricultural system using both community composition and microbial associations. Here we show that tests of the fundamental hypotheses that fungi, as compared to bacteria, are (i) more resistant to drought stress but (ii) less resilient when rewetting relieves the stress, found robust support at the level of community composition.
View Article and Find Full Text PDFThe shifts in adaptive strategies revealed by ecological succession and the mechanisms that facilitate these shifts are fundamental to ecology. These adaptive strategies could be particularly important in communities of arbuscular mycorrhizal fungi (AMF) mutualistic with sorghum, where strong AMF succession replaces initially ruderal species with competitive ones and where the strongest plant response to drought is to manage these AMF. Although most studies of agriculturally important fungi focus on parasites, the mutualistic symbionts, AMF, constitute a research system of human-associated fungi whose relative simplicity and synchrony are conducive to experimental ecology.
View Article and Find Full Text PDFRenewable fuels are needed to replace fossil fuels in the immediate future. Lignocellulosic bioenergy crops provide a renewable alternative that sequesters atmospheric carbon. To prevent displacement of food crops, it would be advantageous to grow biofuel crops on marginal lands.
View Article and Find Full Text PDFRecent studies have demonstrated that drought leads to dramatic, highly conserved shifts in the root microbiome. At present, the molecular mechanisms underlying these responses remain largely uncharacterized. Here we employ genome-resolved metagenomics and comparative genomics to demonstrate that carbohydrate and secondary metabolite transport functionalities are overrepresented within drought-enriched taxa.
View Article and Find Full Text PDFHistones belong to a family of highly conserved proteins in eukaryotes. They pack DNA into nucleosomes as functional units of chromatin. Post-translational modifications (PTMs) of histones, which are highly dynamic and can be added or removed by enzymes, play critical roles in regulating gene expression.
View Article and Find Full Text PDFf. sp. race 4 is a causal agent of Fusarium wilt of cotton ( spp.
View Article and Find Full Text PDFCommunity assembly of crop-associated fungi is thought to be strongly influenced by deterministic selection exerted by the plant host, rather than stochastic processes. Here we use a simple, sorghum system with abundant sampling to show that stochastic forces (drift or stochastic dispersal) act on fungal community assembly in leaves and roots early in host development and when sorghum is drought stressed, conditions when mycobiomes are small. Unexpectedly, we find no signal for stochasticity when drought stress is relieved, likely due to renewed selection by the host.
View Article and Find Full Text PDFDrought is the most important environmental stress limiting crop yields. The C4 cereal sorghum [ (L.) Moench] is a critical food, forage, and emerging bioenergy crop that is notably drought-tolerant.
View Article and Find Full Text PDFSorghum [Sorghum bicolor (L.) Moench] is an important cereal crop noted for its ability to survive water-limiting conditions. Herein, we present an analytical workflow to explore the changes in histone modifications through plant developmental stages and two drought stresses in two sorghum genotypes that differ in their response to drought.
View Article and Find Full Text PDFBackground: Sorghum bicolor is the fifth most commonly grown cereal worldwide and is remarkable for its drought and abiotic stress tolerance. For these reasons and the large size of biomass varieties, it has been proposed as a bioenergy crop. However, little is known about the genes underlying sorghum's abiotic stress tolerance and biomass yield.
View Article and Find Full Text PDFThe ecology of fungi lags behind that of plants and animals because most fungi are microscopic and hidden in their substrates. Here, we address the basic ecological process of fungal succession in nature using the microscopic, arbuscular mycorrhizal fungi (AMF) that form essential mutualisms with 70-90% of plants. We find a signal for temporal change in AMF community similarity that is 40-fold stronger than seen in the most recent studies, likely due to weekly samplings of roots, rhizosphere and soil throughout the 17 weeks from seedling to fruit maturity and the use of the fungal DNA barcode to recognize species in a simple, agricultural environment.
View Article and Find Full Text PDFDrought stress is a major obstacle to crop productivity, and the severity and frequency of drought are expected to increase in the coming century. Certain root-associated bacteria have been shown to mitigate the negative effects of drought stress on plant growth, and manipulation of the crop microbiome is an emerging strategy for overcoming drought stress in agricultural systems, yet the effect of drought on the development of the root microbiome is poorly understood. Through 16S rRNA amplicon and metatranscriptome sequencing, as well as root metabolomics, we demonstrate that drought delays the development of the early sorghum root microbiome and causes increased abundance and activity of monoderm bacteria, which lack an outer cell membrane and contain thick cell walls.
View Article and Find Full Text PDFDiseases such as Fusarium wilt [Fusarium oxysporum f.sp. vasinfectum (FOV) Atk.
View Article and Find Full Text PDFKnowledge of the inheritance of disease resistance and genomic regions housing resistance (R) genes is essential to prevent expanding pathogen threats such as Fusarium wilt [Fusarium oxysporum f.sp. vasinfectum (FOV) Atk.
View Article and Find Full Text PDF