Publications by authors named "Robert Hurwitz"

In recent years, a novel treatment method for cancer has emerged, which is based on the starvation of tumors of amino acids like arginine. The deprivation of arginine in serum is based on enzymatic degradation and can be realized by arginine deaminases like the l-amino acid oxidase found in the ink toxin of the sea hare . Previously isolated from the ink, the l-amino acid oxidase was described to oxidate the essential amino acids l-lysine and l-arginine to their corresponding deaminated alpha-keto acids.

View Article and Find Full Text PDF

Resilience to short-term perturbations, like inflammation, is a fundamental feature of microbiota, yet the underlying mechanisms of microbiota resilience are incompletely understood. Here, we show that , a major commensal, stably colonizes the fruit fly gut during infection and is resistant to antimicrobial peptides (AMPs). By transposon screening, we identified mutants sensitive to AMPs.

View Article and Find Full Text PDF

Mouse guanylate-binding proteins (mGBPs) are recruited to various invasive pathogens, thereby conferring cell-autonomous immunity against these pathogens. However, whether and how human GBPs (hGBPs) target (Mtb) and (Lm) remains unclear. Here, we describe hGBPs association with intracellular Mtb and Lm, which was dependent on the ability of bacteria to induce disruption of phagosomal membranes.

View Article and Find Full Text PDF

The methyltransferase FliB posttranslationally modifies surface-exposed ɛ-N-lysine residues of flagellin, the protomer of the flagellar filament in Salmonella enterica (S. enterica). Flagellin methylation, reported originally in 1959, was recently shown to enhance host cell adhesion and invasion by increasing the flagellar hydrophobicity.

View Article and Find Full Text PDF

Coupling between cell-autonomous circadian oscillators is crucial to prevent desynchronization of cellular networks and disruption of circadian tissue functions. While neuronal oscillators within the mammalian central clock, the suprachiasmatic nucleus, couple intercellularly, coupling among peripheral oscillators is controversial and the molecular mechanisms are unknown. Using two- and three-dimensional mammalian culture models in vitro (mainly human U-2 OS cells) and ex vivo, we show that peripheral oscillators couple via paracrine pathways.

View Article and Find Full Text PDF

Exposure of gastric epithelial cells to the bacterial carcinogen Helicobacter pylori causes DNA double strand breaks. Here, we show that H. pylori-induced DNA damage occurs co-transcriptionally in S-phase cells that activate NF-κB signaling upon innate immune recognition of the lipopolysaccharide biosynthetic intermediate β-ADP-heptose by the ALPK1/TIFA signaling pathway.

View Article and Find Full Text PDF

Antimicrobial resistance in tuberculosis (TB) is a public health threat of global dimension, worsened by increasing drug resistance. Host-directed therapy (HDT) is an emerging concept currently explored as an adjunct therapeutic strategy for TB. One potential host target is the ligand-activated transcription factor aryl hydrocarbon receptor (AhR), which binds TB virulence factors and controls antibacterial responses.

View Article and Find Full Text PDF

rapidly adapts to altered conditions by quorum sensing (QS), a communication system that it uses to collectively modify its behavior through the production, release, and detection of signaling molecules. QS molecules can also be sensed by hosts, although the respective receptors and signaling pathways are poorly understood. We describe a pattern of regulation in the host by the aryl hydrocarbon receptor (AhR) that is critically dependent on qualitative and quantitative sensing of quorum.

View Article and Find Full Text PDF

As a first host barrier, the skin is constantly exposed to environmental insults that perturb its integrity. Tight regulation of skin homeostasis is largely controlled by the aryl hydrocarbon receptor (AhR). Here, we demonstrate that Henna and its major pigment, the naphthoquinone Lawsone activate AhR, both in vitro and in vivo.

View Article and Find Full Text PDF

The gastric pathogen activates the NF-κB pathway in human epithelial cells the recently discovered α-kinase 1 TRAF-interacting protein with forkhead-associated domain (TIFA) axis. We and others showed that this pathway can be triggered by heptose 1,7-bisphosphate (HBP), an LPS intermediate produced in gram-negative bacteria that represents a new pathogen-associated molecular pattern (PAMP). Here, we report that our attempts to identify HBP in lysates of revealed surprisingly low amounts, failing to explain NF-κB activation.

View Article and Find Full Text PDF

Cyclic dinucleotides (CDNs) are important second messenger molecules in prokaryotes and eukaryotes. Within host cells, cytosolic CDNs are detected by STING and alert the host by activating innate immunity characterized by type I interferon (IFN) responses. Extracellular bacteria and dying cells can release CDNs, but sensing of extracellular CDNs (eCDNs) by mammalian cells remains elusive.

View Article and Find Full Text PDF

The intracellular human bacterial pathogen Chlamydia trachomatis pursues effective strategies to protect infected cells against death-inducing stimuli. Here, we show that Chlamydia trachomatis infection evokes 3-phosphoinositide-dependent protein kinase-1 (PDPK1) signaling to ensure the completion of its developmental cycle, further leading to the phosphorylation and stabilization of MYC. Using biochemical approaches and imaging we demonstrate that Chlamydia-induced PDPK1-MYC signaling induces host hexokinase II (HKII), which becomes enriched and translocated to the mitochondria.

View Article and Find Full Text PDF

Lung granulomas develop upon Mycobacterium tuberculosis (Mtb) infection as a hallmark of human tuberculosis (TB). They are structured aggregates consisting mainly of Mtb-infected and -uninfected macrophages and Mtb-specific T cells. The production of NO by granuloma macrophages expressing nitric oxide synthase-2 (NOS2) via l-arginine and oxygen is a key protective mechanism against mycobacteria.

View Article and Find Full Text PDF
Article Synopsis
  • The aryl hydrocarbon receptor (AhR) is a transcription factor that detects environmental toxins and is involved in activating detoxifying enzymes and regulating immune responses.
  • Researchers proposed that AhR also evolved to recognize harmful microbes and studied specific bacterial toxins (phenazines from Pseudomonas aeruginosa and phthiocol from Mycobacterium tuberculosis) as ligands for AhR.
  • Their findings indicate that AhR activation leads to the breakdown of these toxins and helps regulate the production of immune signaling molecules, showing that AhR plays a key role in defending against bacterial infections.
View Article and Find Full Text PDF

Bacillus Calmette-Guérin (BCG) has been used for vaccination against tuberculosis for nearly a century. Here, we analyze immunity induced by a live tuberculosis vaccine candidate, recombinant BCG ΔureC::hly vaccine (rBCG), with proven preclinical and clinical safety and immunogenicity. We pursue in-depth analysis of the endogenous mycobacteria-specific CD4(+) T-cell population, comparing the more efficacious rBCG with canonical BCG to determine which T-cell memory responses are prerequisites for superior protection against tuberculosis.

View Article and Find Full Text PDF

T-cell receptor (TCR) signal strength determines selection and lineage fate at the CD4(+)CD8(+) double-positive stage of intrathymic T-cell development. Members of the miR-181 family constitute the most abundantly expressed microRNA at this stage of T-cell development. Here we show that deletion of miR-181a/b-1 reduced the responsiveness of double-positive thymocytes to TCR signals and virtually abrogated early invariant natural killer T (iNKT) cell development, resulting in a dramatic reduction in iNKT cell numbers in thymus as well as in the periphery.

View Article and Find Full Text PDF

The CD8αβ coreceptor is crucial for effective peptide: MHC-I recognition by the TCR of CD8(+) T cells. Adenosine diphosphate ribosyl transferase 2.2 (ART2.

View Article and Find Full Text PDF