Publications by authors named "Robert Holgate"

Background: Metastasis to the brain is a major challenge with poor prognosis. The blood-brain barrier (BBB) is a significant impediment to effective treatment, being intact during the early stages of tumor development and heterogeneously permeable at later stages. Intravenous injection of tumor necrosis factor (TNF) selectively induces BBB permeabilization at sites of brain micrometastasis, in a TNF type 1 receptor (TNFR1)-dependent manner.

View Article and Find Full Text PDF

Acetaminophen (-acetyl--aminophenol; APAP) toxicity is a common cause of liver damage. In the mouse model of APAP-induced liver injury (AILI), interleukin 11 (IL11) is highly up-regulated and administration of recombinant human IL11 (rhIL11) has been shown to be protective. Here, we demonstrate that the beneficial effect of rhIL11 in the mouse model of AILI is due to its inhibition of endogenous mouse IL11 activity.

View Article and Find Full Text PDF

Background: Current prosthetic ankle joints are designed either for walking or for running. In order to mimic the capabilities of an able-bodied, a powered prosthetic ankle for walking and running was designed. A powered system has the potential to reduce the limitations in range of motion and positive work output of passive walking and running feet.

View Article and Find Full Text PDF

Fungal ribotoxins that block protein synthesis can be useful warheads in the context of a targeted immunotoxin. α-Sarcin is a small (17 kDa) fungal ribonuclease produced by Aspergillus giganteus that functions by catalytically cleaving a single phosphodiester bond in the sarcin-ricin loop of the large ribosomal subunit, thus making the ribosome unrecognisable to elongation factors and leading to inhibition of protein synthesis. Peptide mapping using an ex vivo human T cell assay determined that α-sarcin contained two T cell epitopes; one in the N-terminal 20 amino acids and the other in the C-terminal 20 amino acids.

View Article and Find Full Text PDF

An important step in drug development is the assignment of an International Nonproprietary Name (INN) by the World Health Organization (WHO) that provides healthcare professionals with a unique and universally available designated name to identify each pharmaceutical substance. Monoclonal antibody INNs comprise a -mab suffix preceded by a substem indicating the antibody type, e.g.

View Article and Find Full Text PDF

Anti-CD52 therapy has been shown to be effective in the treatment of a number of B cell malignancies, hematopoietic disorders and autoimmune diseases (including rheumatoid arthritis and multiple sclerosis); however the current standard of treatment, the humanized monoclonal antibody alemtuzumab, is associated with the development of anti-drug antibodies in a high proportion of patients. In order to address this problem, we have identified a novel murine anti-CD52 antibody which has been humanized using a process that avoids the inclusion within the variable domains of non-human germline MHC class II binding peptides and known CD4+ T cell epitopes, thus reducing its potential for immunogenicity in the clinic. The resultant humanized antibody, ANT1034, was shown to have superior binding to CD52 expressing cells than alemtuzumab and was more effective at directing both antibody dependent and complement dependent cell cytotoxicity.

View Article and Find Full Text PDF

Ribosome display was applied to the Fc region of human immunoglobulin G (IgG1) to select for improved binding to human FcγRIIIa, the receptor expressed on human natural killer cells that mediates antibody-dependent cellular cytotoxicity (ADCC). A library of human Fcγ1 variants was generated using error-prone polymerase chain reaction, and subjected to multiple rounds of ribosome display selection against progressively decreasing concentrations of soluble human FcγRIIIa, to enrich for improved binders. Radioimmunoassay and alphascreen analyses of the aglycosylated IgG-Fc output revealed variants with improved binding to FcγRIIIa relative to wild-type IgG-Fc.

View Article and Find Full Text PDF

The development of anti-therapeutic antibody immune responses can limit efficacy and reduce the safety of antibody treatments. Despite significant advances to minimize such immune responses, these responses still occur, even against fully human antibodies. Thus, the ability to assess the immunogenic potential of a therapeutic antibody can provide significant benefits during the development cycle of a therapeutic protein, and may lead to the future development of therapeutic antibodies that possess minimal immunogenicity.

View Article and Find Full Text PDF