Publications by authors named "Robert Hoehndorf"

This study investigates the molecular responses to heat stroke in young and old patients by comparing whole-genome transcriptomes between age groups. We analyzed transcriptomic profiles from patients categorized into two age-defined cohorts: young (mean age = 44.9 ± 6 years) and old (mean age = 66.

View Article and Find Full Text PDF

We have used multiple sequencing approaches to sequence the genome of a volunteer from Saudi Arabia. We use the resulting data to generate a de novo assembly of the genome, and use different computational approaches to refine the assembly. As a consequence, we provide a contiguous assembly of the complete genome of an individual from Saudi Arabia for all chromosomes except chromosome Y, and label this assembly KSA001.

View Article and Find Full Text PDF

Motivation: Identifying causal relations between diseases allows for the study of shared pathways, biological mechanisms, and inter-disease risks. Such causal relations can facilitate the identification of potential disease precursors and candidates for drug re-purposing. However, computational methods often lack access to these causal relations.

View Article and Find Full Text PDF

Unlabelled: Automated protein function prediction is a crucial and widely studied problem in bioinformatics. Computationally, protein function is a multilabel classification problem where only positive samples are defined and there is a large number of unlabeled annotations. Most existing methods rely on the assumption that the unlabeled set of protein function annotations are negatives, inducing the false negative issue, where potential positive samples are trained as negatives.

View Article and Find Full Text PDF

Background: In today's landscape of data management, the importance of knowledge graphs and ontologies is escalating as critical mechanisms aligned with the FAIR Guiding Principles-ensuring data and metadata are Findable, Accessible, Interoperable, and Reusable. We discuss three challenges that may hinder the effective exploitation of the full potential of FAIR knowledge graphs.

Results: We introduce "semantic units" as a conceptual solution, although currently exemplified only in a limited prototype.

View Article and Find Full Text PDF

Motivation: Whole-exome and genome sequencing have become common tools in diagnosing patients with rare diseases. Despite their success, this approach leaves many patients undiagnosed. A common argument is that more disease variants still await discovery, or the novelty of disease phenotypes results from a combination of variants in multiple disease-related genes.

View Article and Find Full Text PDF

Background: A major obstacle faced by families with rare diseases is obtaining a genetic diagnosis. The average "diagnostic odyssey" lasts over five years and causal variants are identified in under 50%, even when capturing variants genome-wide. To aid in the interpretation and prioritization of the vast number of variants detected, computational methods are proliferating.

View Article and Find Full Text PDF
Article Synopsis
  • Translational research needs data from different levels of biological systems, but combining that data is tough for scientists.
  • New technologies help gather more data, but researchers struggle to organize all the information effectively.
  • PheKnowLator is a tool that helps scientists create customizable knowledge graphs easily, making it better for managing complex health information without slowing down their work.
View Article and Find Full Text PDF

Background: A major obstacle faced by rare disease families is obtaining a genetic diagnosis. The average "diagnostic odyssey" lasts over five years, and causal variants are identified in under 50%. The Rare Genomes Project (RGP) is a direct-to-participant research study on the utility of genome sequencing (GS) for diagnosis and gene discovery.

View Article and Find Full Text PDF
Article Synopsis
  • The Genetics of Neurodevelopmental Disorders Lab in Padua launched the ID-challenge as part of CAGI6, allowing teams to develop computational methods for predicting patient phenotypes and their genetic causes.
  • Eight research teams worked with genetic data from 415 pediatric patients with Neurodevelopmental Disorders (NDDs), focusing on the sequences of 74 genes to improve phenotype prediction accuracy.
  • The study aimed to identify new genetic causes for patients lacking a diagnosis by analyzing clinical features and known variants, using past data from CAGI5 to aid in their predictions.
View Article and Find Full Text PDF

Motivation: Phenotypes are observable characteristics of an organism and they can be highly variable. Information about phenotypes is collected in a clinical context to characterize disease, and is also collected in model organisms and stored in model organism databases where they are used to understand gene functions. Phenotype data is also used in computational data analysis and machine learning methods to provide novel insights into disease mechanisms and support personalized diagnosis of disease.

View Article and Find Full Text PDF

Background: Identifying variants associated with diseases is a challenging task in medical genetics research. Current studies that prioritize variants within individual genomes generally rely on known variants, evidence from literature and genomes, and patient symptoms and clinical signs. The functionalities of the existing tools, which rank variants based on given patient symptoms and clinical signs, are restricted to the coverage of ontologies such as the Human Phenotype Ontology (HPO).

View Article and Find Full Text PDF

Cells' interactions with their microenvironment influence their morphological features and regulate crucial cellular functions including proliferation, differentiation, metabolism, and gene expression. Most biological data available are based on two-dimensional (2D) cellular models, which fail to recapitulate the three-dimensional (3D) systems. This can be attributed to the lack of cell-matrix interaction and the limitless access to nutrients and oxygen, in contrast to systems.

View Article and Find Full Text PDF

Annotation of biomedical entities with ontology classes provides for formal semantic analysis and mobilisation of background knowledge in determining their relationships. To date, enrichment analysis has been routinely employed to identify classes that are over-represented in annotations across sets of groups, such as biosample gene expression profiles or patient phenotypes, and is useful for a range of tasks including differential diagnosis and causative variant prioritisation. These approaches, however, usually consider only univariate relationships, make limited use of the semantic features of ontologies, and provide limited information and evaluation of the explanatory power of both singular and grouped candidate classes.

View Article and Find Full Text PDF

Motivation: Ontologies contain formal and structured information about a domain and are widely used in bioinformatics for annotation and integration of data. Several methods use ontologies to provide background knowledge in machine learning tasks, which is of particular importance in bioinformatics. These methods rely on a set of common primitives that are not readily available in a software library; a library providing these primitives would facilitate the use of current machine learning methods with ontologies and the development of novel methods for other ontology-based biomedical applications.

View Article and Find Full Text PDF

Background: The current COVID-19 pandemic and the previous SARS/MERS outbreaks of 2003 and 2012 have resulted in a series of major global public health crises. We argue that in the interest of developing effective and safe vaccines and drugs and to better understand coronaviruses and associated disease mechenisms it is necessary to integrate the large and exponentially growing body of heterogeneous coronavirus data. Ontologies play an important role in standard-based knowledge and data representation, integration, sharing, and analysis.

View Article and Find Full Text PDF

Motivation: Protein functions are often described using the Gene Ontology (GO) which is an ontology consisting of over 50 000 classes and a large set of formal axioms. Predicting the functions of proteins is one of the key challenges in computational biology and a variety of machine learning methods have been developed for this purpose. However, these methods usually require a significant amount of training data and cannot make predictions for GO classes that have only few or no experimental annotations.

View Article and Find Full Text PDF

Computing phenotypic similarity helps identify new disease genes and diagnose rare diseases. Genotype-phenotype data from orthologous genes in model organisms can compensate for lack of human data and increase genome coverage. In the past decade, cross-species phenotype comparisons have proven valuble, and several ontologies have been developed for this purpose.

View Article and Find Full Text PDF

Biomedical knowledge is represented in structured databases and published in biomedical literature, and different computational approaches have been developed to exploit each type of information in predictive models. However, the information in structured databases and literature is often complementary. We developed a machine learning method that combines information from literature and databases to predict drug targets and indications.

View Article and Find Full Text PDF

Background: Semantic similarity is a valuable tool for analysis in biomedicine. When applied to phenotype profiles derived from clinical text, they have the capacity to enable and enhance 'patient-like me' analyses, automated coding, differential diagnosis, and outcome prediction. While a large body of work exists exploring the use of semantic similarity for multiple tasks, including protein interaction prediction, and rare disease differential diagnosis, there is less work exploring comparison of patient phenotype profiles for clinical tasks.

View Article and Find Full Text PDF

Motivation: Structural genomic variants account for much of human variability and are involved in several diseases. Structural variants are complex and may affect coding regions of multiple genes, or affect the functions of genomic regions in different ways from single nucleotide variants. Interpreting the phenotypic consequences of structural variants relies on information about gene functions, haploinsufficiency or triplosensitivity and other genomic features.

View Article and Find Full Text PDF

Semantic similarity is a useful approach for comparing patient phenotypes, and holds the potential of an effective method for exploiting text-derived phenotypes for differential diagnosis, text and document classification, and outcome prediction. While approaches for context disambiguation are commonly used in text mining applications, forming a standard component of information extraction pipelines, their effects on semantic similarity calculations have not been widely explored. In this work, we evaluate how inclusion and disclusion of negated and uncertain mentions of concepts from text-derived phenotypes affects similarity of patients, and the use of those profiles to predict diagnosis.

View Article and Find Full Text PDF

Identification of ontology concepts in clinical narrative text enables the creation of phenotype profiles that can be associated with clinical entities, such as patients or drugs. Constructing patient phenotype profiles using formal ontologies enables their analysis via semantic similarity, in turn enabling the use of background knowledge in clustering or classification analyses. However, traditional semantic similarity approaches collapse complex relationships between patient phenotypes into a unitary similarity scores for each pair of patients.

View Article and Find Full Text PDF

Background: In recent years a large volume of clinical genomics data has become available due to rapid advances in sequencing technologies. Efficient exploitation of this genomics data requires linkage to patient phenotype profiles. Current resources providing disease-phenotype associations are not comprehensive, and they often do not have broad coverage of the disease terminologies, particularly ICD-10, which is still the primary terminology used in clinical settings.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Notice

Message: fwrite(): Write of 34 bytes failed with errno=28 No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 272

Backtrace:

A PHP Error was encountered

Severity: Warning

Message: session_write_close(): Failed to write session data using user defined save handler. (session.save_path: /var/lib/php/sessions)

Filename: Unknown

Line Number: 0

Backtrace: