Structure factors describe how incident radiation is scattered from materials such as silicon and germanium and characterize the physical interaction between the material and scattered particles. We used neutron Pendellösung interferometry to make precision measurements of the (220) and (400) neutron-silicon structure factors and achieved a factor-of-four improvement in the (111) structure factor uncertainty. These data provide measurements of the silicon Debye-Waller factor at room temperature and the mean square neutron charge radius square femtometers.
View Article and Find Full Text PDFActa Crystallogr A Found Adv
November 2019
The construction is described of a monolithic thick-crystal perfect silicon neutron interferometer using an ultra-high-precision grinding technique and a combination of annealing and chemical etching that differs from the construction of prior neutron interferometers. The interferometer is the second to have been annealed after machining and the first to be annealed prior to chemical etching. Monitoring the interference signal at each post-fabrication step provides a measurement of subsurface damage and its alleviation.
View Article and Find Full Text PDFA precise value of the neutron lifetime is important in several areas of physics, including determinations of the quark-mixing matrix element │ │, related tests of the Standard Model, and predictions of light element abundances in Big Bang Nucleosynthesis models. We report the progress on a new measurement of the neutron lifetime utilizing the cold neutron beam technique. Several experimental improvements in both neutron and proton counting that have been developed over the last decade are presented.
View Article and Find Full Text PDF