Purpose: Deregulated phosphatidylinositol 3-kinase pathway signaling through AGC kinases including AKT, p70S6 kinase, PKA, SGK and Rho kinase is a key driver of multiple cancers. The simultaneous inhibition of multiple AGC kinases may increase antitumor activity and minimize clinical resistance compared with a single pathway component.
Experimental Design: We investigated the detailed pharmacology and antitumor activity of the novel clinical drug candidate AT13148, an oral ATP-competitive multi-AGC kinase inhibitor.
Human cancers often contain genetic alterations that disable G1/S checkpoint control and loss of this checkpoint is thought to critically contribute to cancer generation by permitting inappropriate proliferation and distorting fate-driven cell cycle exit. The identification of cell permeable small molecules that activate the G1/S checkpoint may therefore represent a broadly applicable and clinically effective strategy for the treatment of cancer. Here we describe the identification of several novel small molecules that trigger G1/S checkpoint activation and characterise the mechanism of action for one, CCT020312, in detail.
View Article and Find Full Text PDFHistone deacetylase (HDAC) inhibitors are currently approved for cutaneous T-cell lymphoma and are in mid-late stage trials for other cancers. The HDAC inhibitors LAQ824 and SAHA increase phosphocholine (PC) levels in human colon cancer cells and tumor xenografts as observed by magnetic resonance spectroscopy (MRS). In this study, we show that belinostat, an HDAC inhibitor with an alternative chemical scaffold, also caused a rise in cellular PC content that was detectable by (1)H and (31)P MRS in prostate and colon carcinoma cells.
View Article and Find Full Text PDFPurpose: Preoperative chemotherapy has demonstrated a survival benefit for patients with potentially resectable esophageal cancer; however, currently it is not possible to predict the benefit of this treatment for an individual patient. This prospective study was designed to correlate gene expression profiles with clinical outcome in this setting.
Patients And Methods: Eligible patients were deemed to have resectable disease after staging by computed tomography, endoscopic ultrasound, and laparoscopy as indicated and following discussion at the multidisciplinary team meeting.
The cyclin-dependent kinase (CDK) inhibitor seliciclib (R-roscovitine, CYC202) shows promising antitumor activity in preclinical models and is currently undergoing phase II clinical trials. Inhibition of the CDKs by seliciclib could contribute to cell cycle arrest and apoptosis seen with the drug. However, it is common for drugs to exert multiple effects on gene expression and biochemical pathways.
View Article and Find Full Text PDFHM74 and HM74a have been identified as receptors for niacin. HM74a mediates the pharmacological anti-lipolytic effects of niacin in adipocytes by reducing intracellular cyclic AMP (cAMP) and inhibiting release of free fatty acids into the circulation. In macrophages, niacin induces peroxisome proliferator-activated receptor gamma (PPARgamma)-dependent and cAMP-dependent expression of genes mediating reverse cholesterol transport, although via an unidentified receptor.
View Article and Find Full Text PDFPurpose: The impact of the presence of a germ-line BRCA1 mutation on gene expression in normal breast fibroblasts after radiation-induced DNA damage has been investigated.
Experimental Design: High-density cDNA microarray technology was used to identify differential responses to DNA damage in fibroblasts from nine heterozygous BRCA1 mutation carriers compared with five control samples without personal or family history of any cancer. Fibroblast cultures were irradiated, and their expression profile was compared using intensity ratios of the cDNA microarrays representing 5603 IMAGE clones.
Often the use of cytotoxic drugs in cancer therapy results in stable disease rather than regression of the tumor, and this is typically seen as a failure of treatment. We now show that DNA damage is able to induce senescence in tumor cells expressing wild-type p53. We also show that cytotoxics are capable of inducing senescence in tumor tissue in vivo.
View Article and Find Full Text PDF