Publications by authors named "Robert H Walters"

Drying is a commonly used technique for improving the product stability of biotherapeutics. Typically, drying is accomplished through freeze-drying, as evidenced by the availability of several lyophilized products on the market. There are, however, a number of drawbacks to lyophilization, including the lengthy process time required for drying, low energy efficiency, high cost of purchasing and maintaining the equipment, and sensitivity of the product to freezing and various other processing-related stresses.

View Article and Find Full Text PDF

Abnormally expanded polyglutamine domains in proteins are associated with several neurodegenerative diseases, including Huntington's disease. Expansion of the polyglutamine (polyQ) domain facilitates aggregation of the affected protein, and several studies directly link aggregation to neurotoxicity. Studies of synthetic polyQ peptides have contributed substantially to our understanding of the mechanism of aggregation.

View Article and Find Full Text PDF

Abnormally expanded polyglutamine domains are associated with at least nine neurodegenerative diseases, including Huntington's disease. Expansion of the glutamine region facilitates aggregation of the impacted protein, and aggregation has been linked to neurotoxicity. Studies of synthetic peptides have contributed substantially to our understanding of the mechanism of aggregation because the underlying biophysics of polyglutamine-mediated association can be probed independent of their context within a larger protein.

View Article and Find Full Text PDF

Abnormally expanded polyglutamine domains in proteins are associated with several neurodegenerative diseases, of which the best known is Huntington's. Expansion of the polyglutamine domain facilitates aggregation of the affected protein, and several studies directly link aggregation to neurotoxicity. The age of onset of disease is inversely correlated with the length of the polyglutamine domain; this correlation motivates an examination of the role of the length of the domain on aggregation.

View Article and Find Full Text PDF

There are at least nine neurodegenerative diseases associated with proteins that contain an unusually expanded polyglutamine domain, the best known of which is Huntington's disease. In all of these diseases, the mutant protein aggregates into neuronal inclusions; it is generally, although not universally, believed that protein aggregation is an underlying cause of the observed neuronal degeneration. In an effort to examine the role of polyglutamine in facilitating protein aggregation, investigators have used synthetic polyglutamine peptides as model systems.

View Article and Find Full Text PDF