Publications by authors named "Robert H Cudmore"

Mammalian parenting is an unusually demanding commitment. How has the reward system been co-opted to ensure parental care? Previous work has implicated the lateral habenula (LHb), an epithalamic nucleus, as a potential intersection of parenting behavior and reward. Here, we examine the role of the LHb in the maternal behavior of naturally parturient primiparous mouse dams.

View Article and Find Full Text PDF

Perceptual learning improves our ability to interpret sensory stimuli present in our environment through experience. Despite its importance, the underlying mechanisms that enable perceptual learning in our sensory cortices are still not fully understood. In this study, we used in vivo two-photon imaging to investigate the functional and structural changes induced by visual stimulation in the mouse primary visual cortex (V1).

View Article and Find Full Text PDF

The analysis of action potentials and other membrane voltage fluctuations provides a powerful approach for interrogating the function of excitable cells. However, a major bottleneck in the interpretation of this critical data is the lack of intuitive, agreed-upon software tools for its analysis. Here, we present SanPy, an open-source and freely available software package for the analysis and exploration of whole-cell current-clamp recordings written in Python.

View Article and Find Full Text PDF

Mammalian parenting is an unusually demanding commitment. How did evolution co-opt the reward system to ensure parental care? Previous work has implicated the lateral habenula (LHb), an epithalamic nucleus, as a potential intersection of parenting behavior and reward. Here, we examine the role of the LHb in the maternal behavior of naturally parturient mouse dams.

View Article and Find Full Text PDF

Over the last two decades a growing number of neuroscience labs are conducting behavioral assays in rodents. The equipment used to collect this behavioral data must effectively limit environmental and experimenter disruptions, to avoid confounding behavior data. Proprietary behavior boxes are expensive, offer limited compatible sensors, and constrain analysis with closed-source hardware and software.

View Article and Find Full Text PDF

Brightest path tracing is a widely used image processing technique in several fields including biology, geography, and geology. However, despite the availability of many image processing libraries in Python, few offer an out-of-the-box implementation of a brightest path tracing algorithm. This paper presents a Python package, brightest-path-lib, that efficiently finds the path with maximum brightness between points in a 2D or 3D image.

View Article and Find Full Text PDF

The analysis of action potentials and other membrane voltage fluctuations provide a powerful approach for interrogating the function of excitable cells. Yet, a major bottleneck in the interpretation of this critical data is the lack of intuitive, agreed upon software tools for its analysis. Here, we present SanPy, a Python-based open-source and freely available software pipeline for the analysis and exploration of whole-cell current-clamp recordings.

View Article and Find Full Text PDF

Each heartbeat begins with the generation of an action potential in pacemaking cells in the sinoatrial node. This signal triggers contraction of cardiac muscle through a process termed excitation-contraction (EC) coupling. EC coupling is initiated in dyadic structures of cardiac myocytes, where ryanodine receptors in the junctional sarcoplasmic reticulum come into close apposition with clusters of CaV1.

View Article and Find Full Text PDF

The cardiac cycle starts when an action potential is produced by pacemaking cells in the sinoatrial node. This cycle is repeated approximately 100 000 times in humans and 1 million times in mice per day, imposing a monumental metabolic demand on the heart, requiring efficient blood supply via the coronary vasculature to maintain cardiac function. Although the ventricular coronary circulation has been extensively studied, the relationship between vascularization and cellular pacemaking modalities in the sinoatrial node is poorly understood.

View Article and Find Full Text PDF

Brain ischemia results from cardiac arrest, stroke or head trauma. The structural basis of rescuing the synaptic impairment and cortical dysfunctions induced in the stage of ischemic-reperfusion can occur if therapeutic interventions are applied in time, but the functional basis for this resilience remains elusive. Here, we explore the changes in cortical activity and a-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid receptor (AMPAR) GluA1 subunit in spine (sGluA1) after transient ischemia-reperfusion for 28 days.

View Article and Find Full Text PDF

Regulation of AMPA receptor (AMPAR) expression is central to synaptic plasticity and brain function, but how these changes occur in vivo remains elusive. Here, we developed a method to longitudinally monitor the expression of synaptic AMPARs across multiple cortical layers in awake mice using two-photon imaging. We observed that baseline AMPAR expression in individual spines is highly dynamic with more dynamics in primary visual cortex (V1) layer 2/3 (L2/3) neurons than V1 L5 neurons.

View Article and Find Full Text PDF

Modulation of synaptic strength through trafficking of AMPA receptors (AMPARs) is a fundamental mechanism underlying synaptic plasticity, learning, and memory. However, the dynamics of AMPAR trafficking in vivo and its correlation with learning have not been resolved. Here, we used in vivo two-photon microscopy to visualize surface AMPARs in mouse cortex during the acquisition of a forelimb reaching task.

View Article and Find Full Text PDF

Surgical ovariectomy has been shown to reduce spine density in hippocampal CA1 pyramidal cells of rodents, and this reduction is reversed by 17β-estradiol (E2) treatment in a model of human estrogen replacement therapy. Here, we report reduction of spine density in apical dendrites of layer 5 pyramidal neurons of several neocortical regions that is reversed by subsequent E2 treatment in ovariectomized (OVX) female Thy1M-EGFP mice. We also found that OVX-associated reduction of spine density in somatosensory cortex was accompanied by a reduction in miniature EPSC (mEPSC) frequency (but not mIPSC frequency), indicating a change in functional synapses.

View Article and Find Full Text PDF

The cerebral vasculature provides blood flow throughout the brain, and local changes in blood flow are regulated to match the metabolic demands of the active brain regions. This neurovascular coupling is mediated by real-time changes in vessel diameter and depends on the underlying vascular network structure. Neurovascular structure is configured during development by genetic and activity-dependent factors.

View Article and Find Full Text PDF

It is widely believed that damaged axons in the adult mammalian brain have little capacity to regrow, thereby impeding functional recovery after injury. Studies using fixed tissue have suggested that serotonin neurons might be a notable exception, but remain inconclusive. We have employed in vivo two-photon microscopy to produce time-lapse images of serotonin axons in the neocortex of the adult mouse.

View Article and Find Full Text PDF

Regulation of AMPA receptor (AMPAR) membrane trafficking is critical for synaptic plasticity, as well as for learning and memory. However, the mechanisms of AMPAR trafficking in vivo remain elusive. Using in vivo two-photon microscopy in the mouse somatosensory barrel cortex, we found that acute whisker stimulation led to a significant increase in the intensity of surface AMPAR GluA1 subunit (sGluA1) in both spines and dendritic shafts and a small increase in spine size relative to prestimulation values.

View Article and Find Full Text PDF

Hyperpolarization-activated cyclic nucleotide modulated current (I(h)) sets resonance frequency within the θ-range (5–12 Hz) in pyramidal neurons. However, its precise contribution to the temporal fidelity of spike generation in response to stimulation of excitatory or inhibitory synapses remains unclear. In conditions where pharmacological blockade of I(h) does not affect synaptic transmission, we show that postsynaptic h-channels improve spike time precision in CA1 pyramidal neurons through two main mechanisms.

View Article and Find Full Text PDF

Homeostatic plasticity of neuronal intrinsic excitability (HPIE) operates to maintain networks within physiological bounds in response to chronic changes in activity. Classically, this form of plasticity adjusts the output firing level of the neuron through the regulation of voltage-gated ion channels. Ion channels also determine spike timing in individual neurons by shaping subthreshold synaptic and intrinsic potentials.

View Article and Find Full Text PDF

Analysis of synaptic transmission, synaptic plasticity, axonal processing, synaptic timing or electrical coupling requires the simultaneous recording of both the pre- and postsynaptic compartments. Paired-recording technique of monosynaptically connected neurons is also an appropriate technique to probe the function of small molecules (calcium buffers, peptides or small proteins) at presynaptic terminals that are too small to allow direct whole-cell patch-clamp recording. We describe here a protocol for obtaining, in acute and cultured slices, synaptically connected pairs of cortical and hippocampal neurons, with a reasonably high probability.

View Article and Find Full Text PDF

Neuronal excitability has a large impact on network behavior, and plasticity in intrinsic excitability could serve as an important information storage mechanism. Here we ask whether postsynaptic excitability of layer V pyramidal neurons from primary visual cortex can be rapidly regulated by activity. Whole cell current-clamp recordings were obtained from visual cortical slices, and intrinsic excitability was measured by recording the firing response to small depolarizing test pulses.

View Article and Find Full Text PDF

The mechanisms underlying experience-dependent plasticity and refinement of central circuits are not yet fully understood. A non-Hebbian form of synaptic plasticity, which scales synaptic strengths up or down to stabilize firing rates, has recently been discovered in cultured neuronal networks. Here we demonstrate the existence of a similar mechanism in the intact rodent visual cortex.

View Article and Find Full Text PDF