A light detection and ranging (lidar) system with ±90° of steering based on an adaptive electrowetting-based prism for nonmechanical beam steering has been demonstrated. Electrowetting-based prisms provide a transmissive, low power, and compact alternative to conventional adaptive optics as a nonmechanical beam scanner. The electrowetting prism has a steering range of ±7.
View Article and Find Full Text PDFWe present numerical simulations of multielectrode electrowetting devices used in a novel optical design to correct wavefront aberration. Our optical system consists of two multielectrode devices, preceded by a single fixed lens. The multielectrode elements function as adaptive optical devices that can be used to correct aberrations inherent in many imaging setups, biological samples, and the atmosphere.
View Article and Find Full Text PDFNonmechanical beam steering is a rapidly growing branch of adaptive optics with applications such as light detection and ranging, imaging, optical communications, and atomic physics. Here, we present an innovative technique for one- and two-dimensional beam steering using multiple tunable liquid lenses. We use an approach in which one lens controls the spot divergence, and one to two decentered lenses act as prisms and steer the beam.
View Article and Find Full Text PDFWe have demonstrated a one-dimensional array of individually addressable electrowetting tunable liquid lenses that compensate for more than one wave of phase distortion across a wavefront. We report a scheme for piston control using tunable liquid lens arrays in volume-bound cavities that alter the optical path length without affecting the wavefront curvature. Liquid lens arrays with separately tunable focus or phase control hold promise for laser communication systems and adaptive optics.
View Article and Find Full Text PDFExtended depth of field (EDF) microscopy, achieved through computational optics, allows for real-time 3D imaging of live cell dynamics. EDF is achieved through a combination of point spread function engineering and digital image processing. A linear Wiener filter has been conventionally used to deconvolve the image, but it suffers from high frequency noise amplification and processing artifacts.
View Article and Find Full Text PDFA novel application of electrowetting devices has been simulated: wavefront correction using an array of electrowetting lenses and prisms. Five waves of distortion can be corrected with Strehl ratios of 0.9 or higher, utilizing piston, tip-tilt, and curvature corrections from arrays of 19 elements and fill factors as low as 40%.
View Article and Find Full Text PDF