Publications by authors named "Robert Greenes"

The exponential growth of biomedical knowledge in computable formats challenges organizations to consider mobilizing artifacts in findable, accessible, interoperable, reusable, and trustable (FAIR+T) ways. There is a growing need to apply biomedical knowledge artifacts to improve health in Learning Health Systems, health delivery organizations, and other settings. However, most organizations lack the infrastructure required to consume and apply computable knowledge, and national policies and standards adoption are insufficient to ensure that it is discoverable and used safely and fairly, nor is there widespread experience in the process of knowledge implementation as clinical decision support.

View Article and Find Full Text PDF

Introduction: Computable biomedical knowledge artifacts (CBKs) are digital objects conveying biomedical knowledge in machine-interpretable structures. As more CBKs are produced and their complexity increases, the value obtained from sharing CBKs grows. Mobilizing CBKs and sharing them widely can only be achieved if the CBKs are findable, accessible, interoperable, reusable, and trustable (FAIR+T).

View Article and Find Full Text PDF

The study aimed to utilize machine learning (ML) approaches and genomic data to develop a prediction model for bone mineral density (BMD) and identify the best modeling approach for BMD prediction. The genomic and phenotypic data of Osteoporotic Fractures in Men Study (n = 5130) was analyzed. Genetic risk score (GRS) was calculated from 1103 associated SNPs for each participant after a comprehensive genotype imputation.

View Article and Find Full Text PDF

The volume of biomedical knowledge is growing exponentially and much of this knowledge is represented in computer executable formats, such as models, algorithms, and programmatic code. There is a growing need to apply this knowledge to improve health in Learning Health Systems, health delivery organizations, and other settings. However, most organizations do not yet have the infrastructure required to consume and apply computable knowledge, and national policies and standards adoption are not sufficient to ensure that it is discoverable and used safely and fairly, nor is there widespread experience in the process of knowledge implementation as clinical decision support.

View Article and Find Full Text PDF

The volume of biomedical knowledge is growing exponentially and much of this knowledge is represented in computer executable formats, such as models, algorithms and programmatic code. There is a growing need to apply this knowledge to improve health in Learning Health Systems, health delivery organizations, and other settings. However, most organizations do not yet have the infrastructure required to consume and apply computable knowledge, and national policies and standards adoption are not sufficient to ensure that it is discoverable and used safely and fairly, nor is there widespread experience in the process of knowledge implementation as clinical decision support.

View Article and Find Full Text PDF

Background: This study assessed the perceptions of older adults regarding the plan of care (POC) contained in the clinical summary mandated by the Electronic Health Records (EHR) Incentive Program.

Methods: A qualitative descriptive design was selected for this study. Older adults (≥65) with chronic cardiac diagnoses were invited to participate.

View Article and Find Full Text PDF

The IMIA History Working Group has as its first goal the editing of a volume of contributions from pioneers and leaders in the field of biomedical and health informatics (BMHI) to commemorate the 50th anniversary of IMIA's predecessor IFIP-TC4. This paper describes how the IMIA History WG evolved from an earlier Taskforce, and has focused on producing the edited book of original contributions. We describe its proposed outline of objectives for the personal stories, and national and regional society narratives, together with some comments on the evolution of Medinfo meeting contributions over the years, to provide a reference source for the early motivations of the scientific, clinical, educational, and professional changes that have influenced the historical course of our field.

View Article and Find Full Text PDF

Computer-based clinical decision support (CDS) has been pursued for more than five decades. Despite notable accomplishments and successes, wide adoption and broad use of CDS in clinical practice has not been achieved. Many issues have been identified as being partially responsible for the relatively slow adoption and lack of impact, including deficiencies in leadership, recognition of purpose, understanding of human interaction and workflow implications of CDS, cognitive models of the role of CDS, and proprietary implementations with limited interoperability and sharing.

View Article and Find Full Text PDF

Quality reporting for cervical cancer prevention is focused on patients with normal cervical cytology, and excludes patients with cytological abnormalities that may be at higher risk. The major obstacles for granular reporting are the complexity of surveillance guidelines and free-text data. We performed automated chart review to compare the cytology testing rates for patients with 'atypical squamous cells of undetermined significance' (ASCUS) cytology, with the rates for patients with normal cytology.

View Article and Find Full Text PDF

Because of the complexity of cervical cancer prevention guidelines, clinicians often fail to follow best-practice recommendations. Moreover, existing clinical decision support (CDS) systems generally recommend a cervical cytology every three years for all female patients, which is inappropriate for patients with abnormal findings that require surveillance at shorter intervals. To address this problem, we developed a decision tree-based CDS system that integrates national guidelines to provide comprehensive guidance to clinicians.

View Article and Find Full Text PDF

Background: Clinical decision support (CDS) for primary care has been shown to improve delivery of preventive services. However, there is little evidence for efficiency of physicians due to CDS assistance. In this article, we report a pilot study for measuring the impact of CDS on the time spent by physicians for deciding on preventive services and chronic disease management.

View Article and Find Full Text PDF

A major barrier for computer-based clinical decision support (CDS), is the difficulty in obtaining the patient information required for decision making. The information gap is often due to deficiencies in the clinical documentation. One approach to address this gap is to gather and reconcile data from related documents or data sources.

View Article and Find Full Text PDF

Objectives: We previously developed and reported on a prototype clinical decision support system (CDSS) for cervical cancer screening. However, the system is complex as it is based on multiple guidelines and free-text processing. Therefore, the system is susceptible to failures.

View Article and Find Full Text PDF

At the 2011 American College of Medical Informatics (ACMI) Winter Symposium we studied the overlap between health IT and economics and what leading healthcare delivery organizations are achieving today using IT that might offer paths for the nation to follow for using health IT in healthcare reform. We recognized that health IT by itself can improve health value, but its main contribution to health value may be that it can make possible new care delivery models to achieve much larger value. Health IT is a critically important enabler to fundamental healthcare system changes that may be a way out of our current, severe problem of rising costs and national deficit.

View Article and Find Full Text PDF

Objective: To develop a computerized clinical decision support system (CDSS) for cervical cancer screening that can interpret free-text Papanicolaou (Pap) reports.

Materials And Methods: The CDSS was constituted by two rulebases: the free-text rulebase for interpreting Pap reports and a guideline rulebase. The free-text rulebase was developed by analyzing a corpus of 49 293 Pap reports.

View Article and Find Full Text PDF

The Morningside Initiative is a public-private activity that has evolved from an August, 2007, meeting at the Morningside Inn, in Frederick, MD, sponsored by the Telemedicine and Advanced Technology Research Center (TATRC) of the US Army Medical Research Materiel Command. Participants were subject matter experts in clinical decision support (CDS) and included representatives from the Department of Defense, Veterans Health Administration, Kaiser Permanente, Partners Healthcare System, Henry Ford Health System, Arizona State University, and the American Medical Informatics Association (AMIA). The Morningside Initiative was convened in response to the AMIA Roadmap for National Action on Clinical Decision Support and on the basis of other considerations and experiences of the participants.

View Article and Find Full Text PDF

Central problems in health care involve availability, access, quality, and cost. A major part of a health care strategy also involves disease prevention and promotion of healthy lifestyles, which go well beyond the purview of the health care system itself. Implementing any strategy involves health policy, finance, and management expertise.

View Article and Find Full Text PDF

Information technology approaches to delivering diagnostic clinical decision support (CDS) are the subject of the papers to follow in the proceedings. These will address the history of CDS and present day approaches (Miller), evaluation of diagnostic CDS methods (Friedman), and the role of clinical documentation in supporting diagnostic decision making (Schiff). In addition, several other considerations relating to this topic are interesting to ponder.

View Article and Find Full Text PDF

During the last two decades, biomedical informatics (BMI) has become a critical component in biomedical research and health care delivery, as evidenced by two recent phenomena. One, as discussed in the article by Bernstam and colleagues in this issue, has been the introduction of Clinical and Translational Science Awards. Perhaps even more important has been the recent, arguably long overdue, emphasis on deployment of health information technology (IT) nationally.

View Article and Find Full Text PDF

During an ongoing study of wireless vital signs monitoring of post-triage patients with SMART [1] in the waiting area of the emergency department (ED) at the Brigham and Women's Hospital in Boston, Massachusetts, USA, we observed that redundancy in vital signs monitoring can be advantageous.

View Article and Find Full Text PDF

Objective: This study presents a conceptual model to investigate the healthcare technology management (HTM) competency required by healthcare IS professionals and the impact of such competency in gaining strategic advantages through information technology (IT) by development of partnerships with people from different divisions of healthcare organizations.

Methods: First, a scale to measure HTM competency was developed and validated, then it was used to collect the large-scale survey data. Second, the partial least squares (PLS) method was used to empirically test the conceptual model and hypotheses through the large-scale survey data collected.

View Article and Find Full Text PDF