Publications by authors named "Robert Gelein"

Background: Air pollution has been associated with neurodevelopmental disorders in epidemiological studies. In our studies in mice, developmental exposures to ambient ultrafine particulate (UFP) matter either postnatally or gestationally results in neurotoxic consequences that include brain metal dyshomeostasis, including significant increases in brain Fe. Since Fe is redox active and neurotoxic to brain in excess, this study examined the extent to which postnatal Fe inhalation exposure, might contribute to the observed neurotoxicity of UFPs.

View Article and Find Full Text PDF

Background: Exposure to air pollution has been identified as a possible environmental contributor to Alzheimer's Disease (AD) risk. As the number of people with AD worldwide continues to rise, it becomes vital to understand the nature of this potential gene-environment interaction. This study assessed the effects of short-term exposures to concentrated ambient ultrafine particulates (UFP, <100 nm) on measurements of amyloid-β, tau, and microglial morphology.

View Article and Find Full Text PDF

Barium sulfate (BaSO) was considered to be poorly-soluble and of low toxicity, but BaSO NM-220 showed a surprisingly short retention after intratracheal instillation in rat lungs, and incorporation of Ba within the bones. Here we show that static abiotic dissolution cannot rationalize this result, whereas two dynamic abiotic dissolution systems (one flow-through and one flow-by) indicated 50% dissolution after 5 to 6 days at non-saturating conditions regardless of flow orientation, which is close to the in vivo half-time of 9.6 days.

View Article and Find Full Text PDF

Infants born prematurely often require supplemental oxygen, which contributes to aberrant lung development and increased pulmonary morbidity following a respiratory viral infection. We have been using a mouse model to understand how early-life hyperoxia affects the adult lung response to influenza A virus (IAV) infection. Prior studies showed how neonatal hyperoxia (100% oxygen) increased sensitivity of adult mice to infection with IAV [IAV (A/Hong Kong/X31) H3N2] as defined by persistent inflammation, pulmonary fibrosis, and mortality.

View Article and Find Full Text PDF

Background: Previous work has demonstrated size, surface charge and skin barrier dependent penetration of nanoparticles into the viable layers of mouse skin. The goal of this work was to characterize the tissue distribution and mechanism of transport of nanoparticles beyond skin, with and without Ultraviolet Radiation (UVR) induced skin barrier disruption. Atomic absorption spectroscopy (AAS), flow cytometry and confocal microscopy were used to examine the effect of UVR dose (180 and 360 mJ/cm UVB) on the skin penetration and systemic distribution of quantum dot (QD) nanoparticles topically applied at different time-points post UVR using a hairless C57BL/6 mouse model.

View Article and Find Full Text PDF

An aberrant oxygen environment at birth increases the severity of respiratory viral infections later in life through poorly understood mechanisms. Here, we show that alveolar epithelial cell (AEC) 2 cells (AEC2s), progenitors for AEC1 cells, are depleted in adult mice exposed to neonatal hypoxia or hyperoxia. Airway cells expressing surfactant protein (SP)-C and ATP binding cassette subfamily A member 3, alveolar pod cells expressing keratin (KRT) 5, and pulmonary fibrosis were observed when these mice were infected with a sublethal dose of HKx31, H3N2 influenza A virus.

View Article and Find Full Text PDF

Animal dung is a biomass fuel burned by vulnerable populations who cannot afford cleaner sources of energy, such as wood and gas, for cooking and heating their homes. Exposure to biomass smoke is the leading environmental risk for mortality, with over 4,000,000 deaths each year worldwide attributed to indoor air pollution from biomass smoke. Biomass smoke inhalation is epidemiologically associated with pulmonary diseases, including chronic obstructive pulmonary disease (COPD), lung cancer, and respiratory infections, especially in low and middle-income countries.

View Article and Find Full Text PDF

Alveolar epithelial type II cells (AEC2) maintain pulmonary homeostasis by producing surfactant, expressing innate immune molecules, and functioning as adult progenitor cells for themselves and alveolar epithelial type I cells (AEC1). How the proper number of alveolar epithelial cells is determined in the adult lung is not well understood. Here, BrdU labeling, genetic lineage tracing, and targeted expression of the anti-oxidant extracellular superoxide dismutase in AEC2s are used to show how the oxygen environment at birth influences postnatal expansion of AEC2s and AEC1s in mice.

View Article and Find Full Text PDF

Background: The increased production of nanomaterials has caused a corresponding increase in concern about human exposures in consumer and occupational settings. Studies in rodents have evaluated dose-response relationships following respiratory tract (RT) delivery of nanoparticles (NPs) in order to identify potential hazards. However, these studies often use bolus methods that deliver NPs at high dose rates that do not reflect real world exposures and do not measure the actual deposited dose of NPs.

View Article and Find Full Text PDF

Whereas amyloid-β (Aβ) accumulates in the brain of normal animals dosed with low levels of copper (Cu), the mechanism is not completely known. Cu could contribute to Aβ accumulation by altering its clearance and/or its production. Because Cu homeostasis is altered in transgenic mice overexpressing Aβ precursor protein (APP), the objective of this study was to elucidate the mechanism of Cu-induced Aβ accumulation in brains of normal mice and then to explore Cu's effects in a mouse model of Alzheimer's disease.

View Article and Find Full Text PDF

Excessive manganese (Mn) uptake by brain cells, particularly in regions like the basal ganglia, can lead to toxicity. Mn(2+) is transported into cells via a number of mechanisms, while Mn(3+) is believed to be transported similarly to iron (Fe) via the transferrin (Tf) mechanism. Cellular Mn uptake is therefore determined by the activity of the mechanisms transporting Mn into each type of cell and by the amounts of Mn(2+), Mn(3+) and their complexes to which these cells are exposed; this complicates understanding the contributions of each transporter to Mn toxicity.

View Article and Find Full Text PDF

Ultraviolet radiation (UVR) skin exposure is a common exogenous insult that can alter skin barrier and immune functions. With the growing presence of nanoparticles (NPs) in consumer goods and technological applications the potential for NPs to contact UVR-exposed skin is increasing. Therefore it is important to understand the effect of UVR on NP skin penetration and the potential for systemic translocation.

View Article and Find Full Text PDF

Iron is critical in multiple aspects of CNS development, but its role in neurodevelopment--the ability of iron deficiency to alter normal development--is difficult to dissociate from the effects of anemia. We developed a novel dietary restriction model in the rat that allows us to study the effects of iron deficiency in the absence of severe anemia. Using a combination of auditory brainstem response analyses (ABR) and electron microscopy, we identified an unexpected impact of nonanemic iron deficiency on axonal diameter and neurofilament regulation in the auditory nerve.

View Article and Find Full Text PDF

There is an urgent need for in vitro screening assays to evaluate nanoparticle (NP) toxicity. However, the relevance of in vitro assays is still disputable. We administered doses of TiO(2) NPs of different sizes to alveolar epithelial cells in vitro and the same NPs by intratracheal instillation in rats in vivo to examine the correlation between in vitro and in vivo responses.

View Article and Find Full Text PDF

Studies showed that certain cytotoxicity assays were not suitable for assessing nanoparticle (NP) toxicity. We evaluated a lactate dehydrogenase (LDH) assay for assessing copper (Cu-40, 40nm), silver (Ag-35, 35nm; Ag-40, 40nm), and titanium dioxide (TiO(2)-25, 25nm) NPs by examining their potential to inactivate LDH and interference with β-nicotinamide adenine dinucleotide (NADH), a substrate for the assay. We also performed a dissolution assay for some of the NPs.

View Article and Find Full Text PDF

It is well acknowledged from observations in humans that iron deficiency during pregnancy can be associated with a number of developmental problems in the newborn and developing child. Due to the obvious limitations of human studies, the stage during gestation at which maternal iron deficiency causes an apparent impairment in the offspring remains elusive. In order to begin to understand the time window(s) during pregnancy that is/are especially susceptible to suboptimal iron levels, which may result in negative effects on the development of the fetus, we developed a rat model in which we were able to manipulate and monitor the dietary iron intake during specific stages of pregnancy and analyzed the developing fetuses.

View Article and Find Full Text PDF

The dispersion in air of nanoparticles of different sizes, materials and morphologies with controlled agglomeration involving aerosol delivery for in vivo and in vitro studies is one of the most difficult challenges in the field of nanoparticle toxicology. We describe here a nanoparticle dispersion system using an electrospray method to deliver airborne nanoparticles (approximately 10-100 nm) with spatial uniformity and controllable particle concentration for in vitro and in vivo studies. With the dispersion method, single nanoparticles (polystyrene latex particles, TiO(2), Au, Mn, quantum dots, and carbon nanotubes) can be delivered to cells and animals via the air.

View Article and Find Full Text PDF

Short and long-term pulmonary response to inhaled nickel hydroxide nanoparticles (nano-Ni(OH)(2), CMD = 40 nm) in C57BL/6 mice was assessed using a whole body exposure system. For short-term studies mice were exposed for 4 h to nominal concentrations of 100, 500, and 1000 mg/m(3). For long-term studies mice were exposed for 5 h/d, 5 d/w, for up to 5 months (m) to a nominal concentration of 100 mg/m(3).

View Article and Find Full Text PDF

Engineered nanoparticles (NP) are being developed and incorporated in a number of commercial products, raising the potential of human exposure during manufacture, use, and disposal. Although data concerning the potential toxicity of some NP have been reported, validated simple assays are lacking for predicting their in vivo toxicity. The aim of this study was to evaluate new response metrics based on chemical and biological activity of NP for screening assays that can be used to predict NP toxicity in vivo.

View Article and Find Full Text PDF

Background: Many populations are exposed to multiple species of mercury (Hg), predominantly organic Hg as methylmercury (MeHg) from fish, and inorganic Hg as Hg vapor from dental amalgams. Most of our knowledge of the neurotoxicity of Hg is based on research devoted to studying only one form at a time, mostly MeHg.

Objectives: In this study we investigated the effects of prenatal exposure to MeHg and Hg vapor on Hg concentrations in the brain of neonatal rats.

View Article and Find Full Text PDF

Despite its potentially adverse effects on lung development and function, supplemental oxygen is often used to treat premature infants in respiratory distress. To understand how neonatal hyperoxia can permanently disrupt lung development, we previously reported increased lung compliance, greater alveolar simplification, and disrupted epithelial development in adult mice exposed to 100% inspired oxygen fraction between postnatal days 1 and 4. Here, we investigate whether oxygen-induced changes in lung function are attributable to defects in surfactant composition and activity, structural changes in alveolar development, or both.

View Article and Find Full Text PDF

A method to investigate the dependence of the physicochemical properties of nanoparticles (e.g. size, surface area and crystal phase) on their oxidant generating capacity is proposed and demonstrated for TiO(2) nanoparticles.

View Article and Find Full Text PDF

Objective: The objective of this study was to investigate mechanisms underlying species specificity in particle-induced lung inflammation.

Methods: Rats, mice, and hamsters exposed to air, 1, 7, or 50 mg/m3 of carbon black for 13 weeks were killed at 1 day, 3 months, and 11 months after exposure. Bronchoalveolar lavage was performed and characterized for cell number, cell type, reactive oxygen and nitrogen species, and cytokine levels.

View Article and Find Full Text PDF

Epidemiological studies associate ambient particulate pollution with adverse health outcomes in elderly individuals with cardiopulmonary diseases. We hypothesized that freshly generated ultrafine particles (UFP) contribute to these effects, as they are present in high number concentrations on highways and vehicle passengers are exposed directly to them. Aged spontaneously hypertensive rats (9-12 mo) with implanted radiotelemetry devices were exposed to highway aerosol or filtered, gas-denuded (clean) air using an on-road exposure system to examine effects on heart rate (HR) and heart-rate variability (HRV).

View Article and Find Full Text PDF