In normal vision, visual scenes are predictable, as they are both spatially and temporally redundant. Evidence suggests that the visual system may use the spatio-temporal regularities of the external world, available in the retinal signal, to extract information from the visual environment and better reconstruct current and future stimuli. We studied this by recording neuronal responses of primary visual cortex (area V1) in anaesthetized and paralysed macaques during the presentation of dynamic sequences of bars, in which spatio-temporal regularities and local information were independently manipulated.
View Article and Find Full Text PDFThe spatio-temporal properties of saccadic eye movements can be influenced by the cognitive demand and the characteristics of the observed scene. Probably due to its crucial role in social communication, it is argued that face perception may involve different cognitive processes compared with non-face object or scene perception. In this study, we investigated whether and how face and natural scene images can influence the patterns of visuomotor activity.
View Article and Find Full Text PDFCentre-surround interaction in the primary visual cortex (area V1) has been studied extensively using artificial, abstract stimulus patterns, such as bars, gratings and simple texture patterns. In this experiment, we extend the study of centre-surround interaction by using natural scene images. We systematically varied the contrast of natural image surrounds presented outside the classical receptive field (CRF), and recorded neuronal response to a natural image patch presented within the CRF in area V1 of awake, fixating macaques.
View Article and Find Full Text PDFSpatial and temporal regularities commonly exist in natural visual scenes. The knowledge of the probability structure of these regularities is likely to be informative for an efficient visual system. Here we explored how manipulating the spatio-temporal prior probability of stimuli affects human orientation perception.
View Article and Find Full Text PDFFace perception plays a crucial role in primate social communication. We have investigated the pattern of eye movements produced by rhesus monkeys (Macaca mulatta) as they viewed images of faces. Eye positions were recorded accurately using implanted eye coils, while neutral upright, inverted and scrambled images of monkey and human faces were presented on a computer screen.
View Article and Find Full Text PDF