Aims: Fracture-related infection (FRI) is commonly classified based on the time of onset of symptoms. Early infections (< two weeks) are treated with debridement, antibiotics, and implant retention (DAIR). For late infections (> ten weeks), guidelines recommend implant removal due to tolerant biofilms.
View Article and Find Full Text PDFReliable and timely assessment of bone union between vertebrae is considered a key challenge after spinal fusion surgery. Recently, a novel sensor concept demonstrated the ability to objectively assess posterolateral fusion based on continuous implant load monitoring. The aim of this study was to investigate systematically the concept in a mono-segmental fusion model using an updated sensor setup.
View Article and Find Full Text PDFBackground And Objectives: Fractures of the proximal humerus are common, particularly in elderly populations. Anatomical locking plates target stabilization with a multitude of screws spanning into the humeral head. Sound implant placement and screw length determination are key for a successful clinical outcome but are difficult to obtain from planar X-rays.
View Article and Find Full Text PDFBackground: Approximately 10% of all bone fractures result in delayed fracture healing or non-union; thus, the identification of biomarkers and prognostic factors is of great clinical interest. MicroRNAs (miRNAs) are known to be involved in the regulation of the bone healing process and may serve as functional markers for fracture healing.
Aims And Methods: This systematic review aimed to identify common miRNAs involved in fracture healing or non-union fractures using a qualitative approach.
: Spinal fusion is an effective and widely accepted intervention. However, complications such as non-unions and hardware failures are frequently observed. Radiologic imaging and physical examination are still the gold standards in the assessment of spinal fusion, despite multiple limitations including radiation exposure and subjective image interpretation.
View Article and Find Full Text PDF: Fracture healing is currently assessed through qualitative evaluation of radiographic images, which is highly subjective in nature. Radiographs can only provide snapshots in time, which are limited due to logistics and radiation exposure. We recently proposed assessing the bone healing status through continuous monitoring of the implant load, utilizing an implanted sensor system, the Fracture Monitor.
View Article and Find Full Text PDFRetrograde transpubic screw fixation is a common procedure for the treatment of anterior pelvic ring fractures. With its sparing surgical approach and significant pain relief after screw fixations allowing early mobilisation, it has gained importance especially in the treatment of insufficiency fractures in elderly patients. However, positioning of transpubic screw osteosynthesis is not always possible due to narrowness and curvature of the screw corridor.
View Article and Find Full Text PDFImplant placement plays a key role in trauma and orthopedics. In this paper, a generic technological concept for implant positioning assistance is outlined. The system utilizes conventional radiographic devices for imaging and tracking and embeds into surgical workflows without the need for complex navigation equipment.
View Article and Find Full Text PDFEvidence has arisen in recent years suggesting that a tissue renin-angiotensin system (tRAS) is involved in the progression of various human diseases. This system contains two regulatory pathways: a pathological pro-inflammatory pathway containing the Angiotensin Converting Enzyme (ACE)/Angiotensin II (AngII)/Angiotensin II receptor type 1 (AGTR1) axis and a protective anti-inflammatory pathway involving the Angiotensin II receptor type 2 (AGTR2)/ACE2/Ang1-7/MasReceptor axis. Numerous studies reported the positive effects of pathologic tRAS pathway inhibition and protective tRAS pathway stimulation on the treatment of cardiovascular, inflammatory, and autoimmune disease and the progression of neuropathic pain.
View Article and Find Full Text PDFImplantable orthopedic devices have had an enormously positive impact on human health; however, despite best practice, patients are prone to developing orthopedic device-related infections (ODRI) that have high treatment failure rates. One barrier to the development of improved treatment options is the lack of an animal model that may serve as a robust preclinical assessment of efficacy. We present a clinically relevant large animal model of chronic methicillin-resistant (MRSA) ODRI that persists despite current clinical practice in medical and surgical treatment at rates equivalent to clinical observations.
View Article and Find Full Text PDFAims: Biofilm formation is one of the primary reasons for the difficulty in treating implant-related infections (IRIs). Focused high-energy extracorporeal shockwave therapy (fhESWT), which is a treatment modality for fracture nonunions, has been shown to have a direct antibacterial effect on planktonic bacteria. The goal of the present study was to investigate the effect of fhESWT on biofilms in vitro in the presence and absence of antibiotic agents.
View Article and Find Full Text PDFLocal antimicrobial therapy is an integral aspect of treating orthopedic device-related infection (ODRI), which is conventionally administered via polymethyl-methacrylate (PMMA) bone cement. PMMA, however, is limited by a suboptimal antibiotic release profile and a lack of biodegradability. In this study, we compare the efficacy of PMMA versus an antibiotic-loaded hydrogel in a single-stage revision for chronic methicillin-resistant Staphylococcus aureus (MRSA) ODRI in sheep.
View Article and Find Full Text PDFCirculating microRNAs (miRNAs) have been associated with various degenerative diseases, including intervertebral disc (IVD) degeneration. Lumbar disc herniation (LDH) often occurs in young patients, although the underlying mechanisms are poorly understood. The aim of this work was to generate RNA deep sequencing data of peripheral blood samples from patients suffering from LDH, identify circulating miRNAs, and analyze them using bioinformatics applications.
View Article and Find Full Text PDFCortical bone and its microstructure are crucial for bone strength, especially at the long bone diaphysis. However, it is still not well-defined how imaging procedures can be used as predictive tools for mechanical bone properties. This study evaluated the capability of several high-resolution imaging techniques to capture cortical bone morphology and assessed the correlation with the bone's mechanical properties.
View Article and Find Full Text PDFAs viruses with high specificity for their bacterial hosts, bacteriophages (phages) are an attractive means to eradicate bacteria, and their potential has been recognized by a broad range of industries. Against a background of increasing rates of antibiotic resistance in pathogenic bacteria, bacteriophages have received much attention as a possible "last-resort" strategy to treat infections. The use of bacteriophages in human patients is limited by their sensitivity to acidic pH, enzymatic attack and short serum half-life.
View Article and Find Full Text PDFObjective: Bone infections are challenging to treat because of limited capability of systemic antibiotics to accumulate at the bone site. To enhance therapeutic action, systemic treatments are commonly combined with local antibiotic-loaded materials. Nevertheless, available drug carriers have undesirable properties, including inappropriate antibiotic release profiles and nonbiodegradability.
View Article and Find Full Text PDFOsteomyelitis is an inflammation of the bone and bone marrow that is most commonly caused by a Staphylococcus aureus infection. Much of our understanding of the underlying pathophysiology of osteomyelitis, from the perspective of both host and pathogen, has been revised in recent years, with notable discoveries including the role played by osteocytes in the recruitment of immune cells, the invasion and persistence of S. aureus in submicron channels of cortical bone, and the diagnostic role of polymorphonuclear cells in implant-associated osteomyelitis.
View Article and Find Full Text PDFBackground/objective: Artificial bone models (ABMs) are used in orthopaedics for research of biomechanics, development of implants and educational purposes. Most of the commercially available ABMs approximate the morphology of Europeans, but they may not depict the Asian anatomy. Therefore, our aim was to develop the first Asian ABM of the pelvis and compare it with the existing pelvic ABM (Synbone®; Caucasian male).
View Article and Find Full Text PDFStandardized and reproducible animal models are required for the assessment of bone healing mediated by biomaterials, cells, and drugs. Among the available bone-fractured models, calvarial defect is a simple and adequate option when researchers investigate intra-membranous bone formation and the influence of their regenerative solutions. However, the conventional surgical tools required to perform calvaria osteotomies (i.
View Article and Find Full Text PDFThe pelvic ring is a highly complex construct with a central role for human stability and mobility. The observable interindividual differences in skeletal anatomy are caused by anatomical variation in the innominate bones as well as the sacrum, further to differences in the spatial arrangement of these bones to each other. The aim of this study was to generate a 3D statistical model of the entire pelvic ring in order to analyse the observed interindividual differences and anatomical variation.
View Article and Find Full Text PDFJ Biomed Mater Res B Appl Biomater
May 2019
The development of an infection is a major complication for some patients with implanted biomaterials. Whether the material or surface composition of the used biomaterial influences infection has not been directly compared for key biomaterials currently in use in human patients. We conducted a thorough in vitro and in vivo investigation using titanium (Ti) and polyether-ether-ketone (PEEK) as both commercially available and as modified equivalents (surface polished Ti, and oxygen plasma treated PEEK).
View Article and Find Full Text PDFObjectives: The varying mechanical properties of human bone have influence on the study results. Pullout and shear forces of human bone were compared to different substitutes to evaluate their suitability for biomechanical studies.
Methods: After bone mineral density (BMD) determination, axial pullout tests were performed with cortical 3.