Human embryonic stem cells (hESCs) theoretically represent an unlimited supply of normal differentiated cells to engineer diseased tissues to regain normal function. However, before hESCs can be useful as human therapeutics, technologies must be developed to provide them with the specific signals required to differentiate in a controlled fashion, to regulate and/or shut down the growth of hESCs and their progeny once they have been transferred to the recipient, and to circumvent the recognition of non-autologous hESC-derived cells as foreign. In the context that gene therapy technologies represent strategies to deliver biological signals to address all of these challenges, this review sets out a framework for combined gene transfer/hESC therapies.
View Article and Find Full Text PDFvon Willebrand disease (VWD), the most common inherited bleeding disorder in the U.S. population, is caused by defects in the expression and processing of von Willebrand factor (VWF), a blood glycoprotein required for normal hemostasis that mediates the adhesion of platelets to sites of vascular damage by binding to specific platelet glycoproteins and to constituents of exposed connective tissue.
View Article and Find Full Text PDFVenomous snakebites result in almost 125,000 deaths per year worldwide. We present a new paradigm for the development of vaccines to protect against snakebite, using knowledge of the structure and action of specific toxins combined with a gene-based strategy to deliver a toxin gene modified to render it non-toxic while maintaining its three-dimensional structure and hence its ability to function as an immunogen. As a model for this approach, we developed a genetic vaccine to protect against alpha-cobratoxin (CTX), a potent, post-synaptic neurotoxin that is the major toxic component of the venom of Naja kaouthia, the monocellate cobra.
View Article and Find Full Text PDFObjective: To identify and understand predictors of successful varicocelectomy.
Design: Examination of testicular L-type voltage-dependent calcium channel (L-VDCC) mRNAs and proteins in testis biopsies and comparison of presence and absence of various mRNAs with testicular cadmium levels, with apoptosis, and with sperm count change after varicocelectomy.
Setting: University clinical urology practice and research laboratories.
Virus-mediated transfer of genes coding for intracellular toxins holds promise for cancer therapy, but the inherent toxicity of such vectors make them a risk to normal tissues and a challenge to produce due to the intrinsic dilemma that expression of toxin molecules kills producer cells. We employed pre-mRNA segmental trans-splicing (STS), in which two engineered DNA fragments coding for 5' "donor" and 3' "acceptor" segments of a toxin gene, respectively, are expressed by viral vectors. When co-delivered to target cells, the two vectors generate two toxin pre-mRNA fragments which are spliced by the target cell machinery to produce functional mRNA and toxin.
View Article and Find Full Text PDFPediatr Neurol
November 2004
Attention deficit hyperactivity disorder is a prevalent disorder characterized by hyperactivity, impulsivity, and attentional dysfunction. It is familial and heritable. Its pathophysiology is thought to involve an abnormality of the brain's dopaminergic neurotransmitter system.
View Article and Find Full Text PDFGene therapy is conventionally carried out by transferring genetic material to the target cell where the exogenous gene is expressed using the endogenous transcription and translation machinery in parallel with the target cell genome. This review focuses on a new paradigm of gene therapy, the use of trans-splicing to modify the genetic repertoire at the pre-mRNA level to treat genetic and acquired disorders. Therapeutic trans-splicing can be used to alter coding domains, to create novel fusion proteins, to direct gene products to various cellular compartments, and to overcome some of the limitations to vector-derived gene transfer technology, including gene therapy with large genes or with genes coding for toxic proteins.
View Article and Find Full Text PDFX-linked immunodeficiency with hyper-IgM (HIGM1), characterized by failure of immunoglobulin isotype switching, is caused by mutations of the CD40 ligand (CD40L), which is normally expressed on activated CD4(+) T cells. As constitutive expression of CD40L induces lymphomas, we corrected the mutation while preserving the natural regulation of CD40L using pre-mRNA trans-splicing. Bone marrow from mice lacking CD40L was modified with a lentivirus trans-splicer encoding the normal CD40L exons 2-5 and was administered to syngenic CD40L-knockout mice.
View Article and Find Full Text PDFWe have developed a new paradigm of in vivo gene transfer termed "segmental trans-splicing" (STS), in which individual "donor" and "acceptor" DNA sequences, delivered in vitro or in vivo, generate pre-mRNAs with 5' and 3' splice signals, respectively, and complementary hybridization domains through which the two pre-mRNAs interact, facilitating trans-splicing of the two mRNA fragments. To demonstrate STS, we used alpha-cobratoxin, a neurotoxin that binds irreversibly to postsynaptic nicotinic acetylcholine receptors. Cells or animals receiving both donor and acceptor plasmids, but neither plasmid alone, yielded RT-PCR products with the correct sequence of mature alpha-cobratoxin mRNA, suggesting that trans-splicing had occurred.
View Article and Find Full Text PDF