The ability to transfer intact proteins and protein complexes into the gas phase by electrospray ionization (ESI) has opened up numerous mass spectrometry (MS)-based avenues for exploring biomolecular structure and function. However, many details regarding the ESI process and the properties of gaseous analyte ions are difficult to decipher when relying solely on experimental data. Molecular dynamics (MD) simulations can provide additional insights into the behavior of ESI droplets and protein ions.
View Article and Find Full Text PDFElectrospray ionization mass spectrometry (ESI-MS) has become an indispensable technique for examining noncovalent protein complexes. Collision-induced dissociation (CID) of these multiply protonated gaseous ions usually culminates in ejection of a single subunit with a disproportionately large amount of charge. Experiments suggest that this process involves subunit unfolding prior to separation from the residual complex, as well as H(+) migration onto the unravelling chain.
View Article and Find Full Text PDFElectrospray ionization (ESI) allows the production of intact gas-phase ions from proteins in solution. Nondenaturing solvent conditions usually culminate in low ESI charge states. However, many mass spectrometric applications benefit from protein ions that are more highly charged.
View Article and Find Full Text PDFThe mechanism whereby gaseous protein ions are released from charged solvent droplets during electrospray ionization (ESI) remains a matter of debate. Also, it is unclear to what extent electrosprayed proteins retain their solution structure. Molecular dynamics (MD) simulations offer insights into the temporal evolution of protein systems.
View Article and Find Full Text PDFMany protein structural investigations involve the use of H/D exchange (HDX) techniques. It is commonly thought that amide backbone protection arises from intramolecular H-bonding and/or burial of NH sites. Recently, fundamental HDX-related tenets have been called into question.
View Article and Find Full Text PDFProtein analyses by electrospray ionization (ESI) mass spectrometry can suffer from interferences caused by nonvolatile salts. The mechanistic basis of this effect remains to be fully investigated. In the current work we explore the behavior of proteins under native and denaturing conditions in the presence of NaCl, CsCl, and tetrabutyl ammonium chloride (NBu4Cl).
View Article and Find Full Text PDFElectrospray ionization (ESI) produces desolvated ions from solution phase analytes for mass spectrometric detection. The final steps of gas phase ion formation from nanometer-sized solvent droplets remain a matter of debate. According to the ion evaporation model (IEM), analytes are ejected from the droplet surface via field emission, whereas the charged residue model (CRM) envisions that ions are released upon droplet evaporation to dryness.
View Article and Find Full Text PDFThe blood-brain barrier controls the passage of molecules from the blood into the central nervous system (CNS) and is a major challenge for treatment of neurological diseases. Metachromatic leukodystrophy is a neurodegenerative lysosomal storage disease caused by loss of arylsulfatase A (ARSA) activity. Gene therapy via intraventricular injection of a lentiviral vector is a potential approach to rapidly and permanently deliver therapeutic levels of ARSA to the CNS.
View Article and Find Full Text PDF