Publications by authors named "Robert G Leigh"

We revisit the problem of extending the phase space of diffeomorphism-invariant theories to account for embeddings associated with the boundary of subregions. We do so by emphasizing the importance of a careful treatment of embeddings in all aspects of the covariant phase space formalism. In so doing we introduce a new notion of the extension of field space associated with the embeddings which has the important feature that the Noether charges associated with all extended corner symmetries are in fact integrable, but not necessarily conserved.

View Article and Find Full Text PDF

We consider the viscoelastic response of the electronic degrees of freedom in 2D and 3D topological insulators (TI's). Our primary focus is on the 2D Chern insulator which exhibits a bulk dissipationless viscosity analogous to the quantum Hall viscosity predicted in integer and fractional quantum Hall states. We show that the dissipationless viscosity is the response of a TI to torsional deformations of the underlying lattice geometry.

View Article and Find Full Text PDF

In the fermionic sector of top-down approaches to holographic systems, one generically finds that the fermions are coupled to gravity and gauge fields in a variety of ways, beyond minimal coupling. In this Letter, we take one such interaction-a Pauli, or dipole, interaction-and study its effects on fermion correlators. We find that this interaction modifies the fermion spectral density in a remarkable way.

View Article and Find Full Text PDF

We present a class of classically marginal N-vector models in d=4 and d=3 whose scalar potentials can be written as subdeterminants of symmetric matrices. The d=3 case can be thought of as a generalization of the scalar sector of the Bagger-Lambert-Gustavsson model. Using the Hubbard-Stratonovich transformation we calculate their effective potentials which exhibit intriguing large-N scaling behaviors.

View Article and Find Full Text PDF

We construct the low-energy theory of a doped Mott insulator, such as the high-temperature superconductors, by explicitly integrating over the degrees of freedom far away from the chemical potential. For either hole or electron doping, a charge 2e bosonic field emerges at low energy. The charge 2e boson mediates dynamical spectral weight transfer across the Mott gap and creates a new charge e excitation by binding a hole.

View Article and Find Full Text PDF

We analytically compute the spectrum of the spin zero glueballs in the planar limit of pure Yang-Mills theory in 2 + 1 dimensions. The new ingredient is provided by our computation of a new nontrivial form of the ground state wave functional. The mass spectrum of the theory is determined by the zeroes of Bessel functions, and the agreement with large lattice data is excellent.

View Article and Find Full Text PDF

We present a novel string theory scenario where matter in a spacetime originates from a decaying brane at the origin of time. The decay could be considered as a big-bang-like event at X0=0. The closed string interpretation is a time-dependent spacetime with a semi-infinite time direction, with the initial energy of the brane converted into energy flux from the origin.

View Article and Find Full Text PDF

We present a consistent string theory model which produces a simple extension of the standard model, consisting of a D3-brane at a simple orbifold singularity. We envision this as a local singularity within a warped compactification. The phenomenology of the model has some novel features.

View Article and Find Full Text PDF