Publications by authors named "Robert G Ewing"

2-Benzylbenzimidazoles, or "nitazenes", are a class of novel synthetic opioids (NSOs) that are increasingly being detected alongside fentanyl analogs and other opioids in drug overdose cases. Nitazenes can be 20× more potent than fentanyl but are not routinely tested for during postmortem or clinical toxicology drug screens; thus, their prevalence in drug overdose cases may be under-reported. Traditional analytical workflows utilizing liquid chromatography-tandem mass spectrometry (LC-MS/MS) often require additional confirmation with authentic reference standards to identify a novel nitazene.

View Article and Find Full Text PDF

The opioid crisis in the United States is being fueled by the rapid emergence of new fentanyl analogs and precursors that can elude traditional library-based screening methods, which require data from known reference compounds. Since reference compounds are unavailable for new fentanyl analogs, we examined if fentanyls (fentanyl + fentanyl analogs) could be identified in a reference-free manner using a combination of electrospray ionization (ESI), high-resolution ion mobility (IM) spectrometry, high-resolution mass spectrometry (MS), and higher-energy collision-induced dissociation (MS/MS). We analyzed a mixture containing nine fentanyls and W-15 (a structurally similar molecule) and found that the protonated forms of all fentanyls exhibited two baseline-separated IM distributions that produced different MS/MS patterns.

View Article and Find Full Text PDF

Vapor detection is a noncontact sampling method, which is a less invasive means of explosives screening than physical swiping. Explosive vapor detection is a challenge due to the low levels of vapors available for detection. This study demonstrates that the parts-per-quadrillion sensitivity of atmospheric flow tube-mass spectrometry (AFT-MS) combined with a high-volume air sampler enables standoff detection of trace explosives vapor at distances of centimeters to meters.

View Article and Find Full Text PDF

High-resolution ion mobility spectrometry-mass spectrometry (HR-IMS-MS) instruments have enormously advanced the ability to characterize complex biological mixtures. Unfortunately, HR-IMS and HR-MS measurements are typically performed independently due to mismatches in analysis time scales. Here, we overcome this limitation by using a dual-gated ion injection approach to couple an 11 m path length structures for lossless ion manipulations (SLIM) module to a Q-Exactive Plus Orbitrap MS platform.

View Article and Find Full Text PDF

There is a need for non-contact, real-time vapor detection of drugs to combat illicit transportation and help curb the opioid epidemic. The low volatility of drugs, like fentanyl, makes room temperature vapor detection of illicit drugs challenging, but feasible by atmospheric flow tube-mass spectrometry (AFT-MS). AFT-MS is a non-contact vapor detection approach capable of ultra-trace detection of drugs, including fentanyl and its analogs at low parts-per-quadrillion (ppq) levels.

View Article and Find Full Text PDF

Proton affinity is a major factor in the atmospheric pressure chemical ionization of illicit drugs. The detection of illicit drugs by mass spectrometry and ion mobility spectrometry relies on the analytes having greater proton affinities than background species. Evaluating proton affinities for fentanyl and its analogues is informative for predicting the likelihood of ionization in different environments and for optimizing the compounds' ionization and detection, such as through the addition of dopant chemicals.

View Article and Find Full Text PDF

Explosives are often used in industry, geology, mining, and other applications, but it is not always clear what remains after a detonation or the fate and transport of any residual material. The goal of this study was to determine to what extent intact molecules of high explosive (HE) compounds are detectable and quantifiable from post-detonation dust and particulates in a field experiment with varied topography. We focused on HMX (1,3,5,7-Tetranitro-1,3,5,7-tetrazocane), which is less studied in field detonation literature, as the primary explosive material and RDX (1,3,5-Trinitroperhydro-1,3,5-triazine) as the secondary material.

View Article and Find Full Text PDF

Knowing accurate saturated vapor pressures of explosives at ambient conditions is imperative to provide realistic boundaries on available vapor for ultra-trace detection. In quantifying vapor content emanating from low-volatility explosives, we observed discrepancies between the quantity of explosive expected based on literature vapor pressure values and the amount detected near ambient temperatures. Most vapor pressure measurements for low-volatility explosives, such as RDX (1,3,5-trinitro-1,3,5-triazinane) and HMX (1,3,5,7-tetranitro-1,3,5,7-tetrazocane), have been made at temperatures far exceeding 25 °C and linear extrapolation of these higher temperature trends appears to underestimate vapor pressures near room temperature.

View Article and Find Full Text PDF

Real-time, non-contact detection of illicit drugs is a desirable goal for the interdiction of these controlled substances, but the relatively low vapor pressures of such species present a challenge for trace vapor detection technologies. The introduction of atmospheric flow tube-mass spectrometry (AFT-MS), which has previously been demonstrated to detect gas-phase analytes at low parts-per-quadrillion levels for explosives and organophosphorus compounds, also enables the potential for non-contact drug detection. With AFT-MS, direct vapor detection of cocaine and methamphetamine from ∼5 μg residues at room temperature is demonstrated herein.

View Article and Find Full Text PDF

In addition to serving as an f-element ligand and rare-earth method complexing agent, tributyl phosphate is a compound containing core functional groups that mimic those routinely found in degradation products from industrial processes. Because detection of trace quantities of tributyl phosphate can provide insight into the routes of contamination and degradation in the environment, there is a need to develop methods capable of detecting trace quantities of tributyl phosphate. Vapor detection at atmospheric pressure is one approach that is both sensitive and rapid.

View Article and Find Full Text PDF

Using a commercial mass spectrometer interfaced with an atmospheric flow tube (AFT) allowed for the detection of a variety of inorganic compounds used as oxidizers in homemade explosives (HMEs) at picogram levels. The AFT provides reaction times of between 3 and 5 s with flows of 6 L/min, enabling detection levels, after thermal desorption, similar to those previously demonstrated for RDX vapor in the low parts per quadrillion range. The thermal desorption of chlorate and perchlorate salts resulted in the production of the corresponding anions which have higher electron affinities than that of the nitrate reactant ions.

View Article and Find Full Text PDF

Real-time low to sub parts-per-trillion (ppt) vapor detection of some organophosphorous compounds (OPCs) is demonstrated with an atmospheric flow tube-mass spectrometer. The chemical species investigated included dimethyl methylphosphonate, triethyl phosphate, and tributylphosphate. The atmospheric flow tube provides ambient chemical ionization with up to several seconds of ionization time.

View Article and Find Full Text PDF

Here we explore the combination of constant and oscillatory fields applied in a single device to affect the continuous separation and filtering of ions based on their mobilities. The device explored allows confining and manipulating ions utilizing a combination of radio frequency (rf), direct current (DC) fields, and traveling waves (TW) in a structures for lossless ion manipulations (SLIM) module. We have investigated theoretically and experimentally a concept for continuous filtering of ions based on their mobilities where ions are mobility separated and selected by passage through two regions, both of which incorporated combined TW and constant fields providing opposing forces on the ions.

View Article and Find Full Text PDF

Time-of-flight-secondary ion mass spectrometry (TOF-SIMS) and laser ablation-inductively coupled plasma mass spectrometry (LA-ICPMS) were used for characterization and identification of unique signatures from a series of 18 Composition C-4 plastic explosives. The samples were obtained from various commercial and military sources around the country. Positive and negative ion TOF-SIMS data were acquired directly from the C-4 residue on Si surfaces, where the positive ion mass spectra obtained were consistent with the major composition of organic additives, and the negative ion mass spectra were more consistent with explosive content in the C-4 samples.

View Article and Find Full Text PDF

This paper presents results of designed experiments performed to study the effect of four factors on the detection of RDX vapors from desorption into an atmospheric flow tube mass spectrometer (AFT-MS). The experiments initially included four independent factors: gas flow rate, desorption current, solvent evaporation time and RDX mass. The values of three detection responses, peak height, peak width, and peak area were recorded but only the peak height response was analyzed.

View Article and Find Full Text PDF

The real-time detection of vapors from low volatility explosives including PETN, tetryl, RDX, and nitroglycerine along with various compositions containing these substances was demonstrated. This was accomplished with an atmospheric flow tube (AFT) using a nonradioactive ionization source coupled to a mass spectrometer. Direct vapor detection was accomplished in less than 5 s at ambient temperature without sample preconcentration.

View Article and Find Full Text PDF

The results in this manuscript represent a demonstration of RDX vapor detection in real time at ambient temperature without sample preconcentration. The detection of vapors from the low volatility explosive compound RDX was achieved through selective atmospheric pressure chemical ionization using nitrate reactant ions (NO(3)(-)) and NO(3)(-)·HNO(3) adducts generated in an electrical discharge source. The RDX vapors were ionized in a reaction region, which provided a variable (up to several seconds) reaction time.

View Article and Find Full Text PDF

The development of compact, rugged and low-power ion sources is critical for the further advancement of handheld mass analyzers. Further, there is a need to replace the common (63)Ni source used at atmospheric pressure with a non-radioactive substitute. We present here a description of a light emitting diode (LED) photoemission ionization source for use in mass spectrometry for the detection of volatile organic compounds.

View Article and Find Full Text PDF

The atmospheric pressure chemical ionization of triacetone triperoxide (TATP) with subsequent separation and detection by ion mobility spectrometry has been studied. Positive ionization with hydronium reactant ions produced only fragments of the TATP molecule, with m/z 91 ion being the most predominant species. Ionization with ammonium reactant ions produced a molecular adduct at m/z 240.

View Article and Find Full Text PDF

In ion mobility spectrometry (IMS), reduced mobility values (K(0)) are used as a qualitative measure of gas phase ions, and are reported in the literature as absolute values. Unfortunately, these values do not always match with those collected in the field. One reason for this discrepancy is that the buffer gas may be contaminated with moisture or other volatile compounds.

View Article and Find Full Text PDF

A recently developed atmospheric pressure ionization source, a distributed plasma ionization source (DPIS), was characterized and compared to commonly used atmospheric pressure ionization sources with both mass spectrometry (MS) and ion mobility spectrometry (IMS). The source consisted of two electrodes of different sizes separated by a thin dielectric. Application of a high RF voltage across the electrodes generated plasma in air yielding both positive and negative ions.

View Article and Find Full Text PDF