Publications by authors named "Robert G Cutlip"

Introduction: Increasing number of stretch-shortening contractions (SSCs) results in increased muscle injury.

Methods: Fischer Hybrid rats were acutely exposed to an increasing number of SSCs in vivo using a custom-designed dynamometer. Magnetic resonance imaging (MRI) imaging was conducted 72 hours after exposure when rats were infused with Prohance and imaged using a 7T rodent MRI system (GE Epic 12.

View Article and Find Full Text PDF

Resistance loading provides an important tool for understanding skeletal muscle responses and adaptations to various perturbations. A model using anesthetized rodents provides the means to control the input parameters carefully, and to measure the output parameters of each muscle contraction. Unilateral models of anesthetized loading also provide the advantage of comparing an unloaded and loaded muscle from the same animal.

View Article and Find Full Text PDF

Aging is associated with increased oxidative stress. Muscle levels of oxidative stress are further elevated with exercise. The purpose of this study was to determine if dietary antioxidant supplementation would improve muscle function and cellular markers of oxidative stress in response to chronic repetitive loading in aging.

View Article and Find Full Text PDF

Biomechanical models of the hand and fingers are useful tools for hand surgeons to improve surgical procedures and for biomedical researchers to explore the mechanical loading in the musculoskeletal system that cannot be easily measured in vivo. The purpose of the present study was to develop a realistic index finger model for solving practical problems. The model includes the meshes of four bony sections (distal, middle, proximal and metacarpal bones) obtained via micro-CT scans.

View Article and Find Full Text PDF

A growing body of data supports a view that skeletal muscle's response after mechanical loading does not always result in the classically reported "injury response." Furthermore, current evidence supports a model of muscle adaptation and/or maladaptation, distinct from overt injury, in which myofiber degeneration and inflammation do not contribute as significantly as once reported even in aged populations.

View Article and Find Full Text PDF

Background: The development of osteoarthritis (OA) in the hand results in increased joint stiffness, which in turn affects the grip strength. The goal of the present study is to theoretically analyze the muscle forces in a thumb in response to the increased joint stiffness.

Methods: The thumb was modeled as a linkage system consisting of a trapezium, a metacarpal bone, a proximal and a distal phalanx.

View Article and Find Full Text PDF

We investigated effects of age and glutathione synthesis inhibition on the oxidative stress status of tibialis anterior muscles from young and old Fisher 344 x Brown Norway male rats after chronic administration of stretch-shortening contractions. Oral supplementation of L: -buthionine-(S,R)-sulfoximine (BSO) inhibited glutathione synthesis. Dorsiflexor muscles in the hindlimb were exposed to 80 maximal stretch-shortening contractions (SSCs) three times per week for 4.

View Article and Find Full Text PDF

The involvement of glutathione in the response of skeletal muscle following repetitive, high-intensity mechanical loading is not known. We examined the influence of a glutathione antagonist [L: -Buthionine Sulfoximine (BSO)] had on the adaptability of skeletal muscle during chronic mechanical loading via stretch-shortening contractions (SSCs) in young and old rats. Left dorsiflexor muscles of young (12 weeks, N = 16) and old (30 months, N = 16), vehicle- and BSO-treated rats were exposed three times per week for 4.

View Article and Find Full Text PDF

Background: The purpose of the current study was to investigate the effects of aging on tendon response to repetitive exposures of stretch-shortening cycles (SSC's).

Methods: The left hind limb from young (3 mo, N = 4) and old (30 mo, N = 9) male Fisher 344 x Brown Norway rats were exposed to 80 maximal SSCs (60 deg/s, 50 deg range of motion) 3 x/week for 4.5 weeks in vivo.

View Article and Find Full Text PDF

A biomechanical model of a thumb would be useful for exploring the mechanical loadings in the musculoskeletal system, which cannot be measured in vivo. The purpose of the current study is to develop a practical kinematic thumb model using the commercial software Anybody (Anybody Technology, Aalborg, Denmark), which includes real CT-scans of the bony sections and realistic tendon/muscle attachments on the bones. The thumb model consists of a trapezium, a metacarpal bone, a proximal and a distal phalanx.

View Article and Find Full Text PDF

This study determined the age-related changes in acute events responsible for initiating skeletal muscle remodeling and (or) regeneration in the tibialis anterior muscle following a bout of stretch-shortening contractions (SSCs). Changes in muscle performance and morphology were quantified in young and old rats, following an acute exposure to adaptive SSCs at 6, 24, 48, 72, and 120 h postexposure (n = 6 for each age at each recovery period). Following SSC exposure, all performance measures were decreased in old rats throughout the 120 h acute phase.

View Article and Find Full Text PDF

This study compares changes in the pro-oxidant production and buffering capacity in young and aged skeletal muscle after exposure to chronic repetitive loading (RL). The dorsiflexors from one limb of young and aged rats were loaded 3 times/week for 4.5 weeks using 80 maximal stretch-shortening contractions per session.

View Article and Find Full Text PDF

Work-related musculoskeletal disorders (MSD) are a major concern in the United States. Overexertion and repetitive motion injuries dominate reporting of lost-time MSD incidents. Over the past three decades, there has been much study on contraction-induced skeletal muscle injury.

View Article and Find Full Text PDF

Musculoskeletal disorders are among the most costly health care problems facing society today. The scientific literature has indicated that psychosocial factors, individual factors, workplace physical requirements, and workplace organizational factors have been associated with risk. Since musculoskeletal risk is multi-dimensional, the magnitude of risk attributable to various factors can be of importance to scientists and policy makers in designing countermeasures to reduce injury incidence.

View Article and Find Full Text PDF

Since musculoskeletal disorders of the upper extremities are believed to be associated with repetitive excessive muscle force production in the hands, understanding the time-dependent muscle forces during key tapping is essential for exploring the mechanisms of disease initiation and development. In the current study, we have simulated the time-dependent dynamic loading in the muscle/tendons in an index finger during tapping. The index finger model is developed using a commercial software package AnyBody, and it contains seven muscle/tendons that connect the three phalangeal finger sections.

View Article and Find Full Text PDF

Unlabelled: Skeletal muscle injury is major concern in sport- and occupation-related fields.

Purpose: We investigated the effects of increasing stretch-shortening contraction (SSC) repetition number in vivo and the resulting changes in functional performance and quantitative morphometry in rat skeletal muscle.

Methods: Functional testing was performed on the ankle dorsiflexor muscles of Sprague-Dawley rats, which were randomly exposed to 30 SSC, 70 SSC, 150 SSC, or 15 isometric contractions of equal duration.

View Article and Find Full Text PDF

Aging increases injury susceptibility and impairs the ability to adapt to repetitive exposures of mechanical loading. The objective of this research was to investigate if movement velocity affects muscle response to a chronic administration of stretch-shortening cycles (SSCs) differently in young vs. old rats.

View Article and Find Full Text PDF

There is increasing evidence that obesity and overweight may be related, in part, to adverse work conditions. In particular, the risk of obesity may increase in high-demand, low-control work environments, and for those who work long hours. In addition, obesity may modify the risk for vibration-induced injury and certain occupational musculoskeletal disorders.

View Article and Find Full Text PDF

Background/aims: The compressive nonlinear-elastic properties of soft tissues are usually determined using unconfined compression tests. To determine the nonlinear-elastic behavior of skin and subcutaneous tissue using a conventional approach, the skin and subcutaneous tissue had to be separated before testing. Using such an approach, measurement errors may be increased as a consequence of the reduced specimen dimensions and cumulative experimental errors.

View Article and Find Full Text PDF

Many work related injuries stem from the exertion of skeletal muscle forces over an extended period of time. Musculoskeletal injury can be caused by muscle's inability to maintain force during occupational exposure. The goal of the present study is to test how various rest times (duty cycles) between long isometric contractions will affect decrements in force, and develop a model that characterizes force decrements due to skeletal muscle fatigue.

View Article and Find Full Text PDF

The objective of this research was to investigate skeletal muscle response to a chronic administration of stretch-shortening cycles (SSCs) in young and old rats. Dorsiflexor muscles of old (30 months, n = 5) and young (12 weeks, n = 6) rats were exposed 3 times/week for 4.5 weeks to a protocol of 80 maximal SSCs per exposure in vivo.

View Article and Find Full Text PDF

Aging impairs the ability of muscle to adapt to exercise or injury. The goal of this study was to determine whether age-related changes in muscle adaptability could be the result of satellite cell apoptosis. Ten days after exposure to an injury protocol, estimates of edema in the exposed tibialis anterior muscles were higher in old (30 months) than young (3 months) rats, and isometric force levels were lower in old rats.

View Article and Find Full Text PDF

Repetitive motion is one risk factor associated with contraction-induced muscle injury, which leads to skeletal muscle degeneration, inflammation, and dysfunction. Since current methods are unable to quantify the acute degenerative and inflammatory responses of muscle tissue concurrently, the purpose of this study was to quantify the temporal myofiber response after exposure to injurious stretch-shortening cycles (SSCs) using a standardized stereological technique. Functional testing was performed on the ankle dorsiflexor muscles of Sprague-Dawley rats in vivo.

View Article and Find Full Text PDF

Purpose: We investigated the effects of muscle length during stretch-shortening cycles (SSC) in vivo on changes in MGF gene expression and quantitative morphometry in rat skeletal muscle.

Methods: Dorsiflexor muscles of male Sprague-Dawley rats were exposed to seven sets of 10 SSC at 500 degrees .s(-1).

View Article and Find Full Text PDF

Heat shock proteins (HSP) HSP72, HSC70 and HSP25 protein levels and mRNA levels of HSP72 genes (Hsp72-1, Hsp72-2, Hsp72-3) and HSC70 were examined in tibialis anterior muscles from young and old rats following 4.5 weeks of heavy resistance exercise. Young (3 months) (n=10) and old (30 months) (n=9) rats were subjected to 14 sessions of electrically evoked resistance training using stretch-shortening contractions of the left limb that activated the dorsiflexor muscle group, including the tibialis anterior muscle, while the right side served as the intra-animal control.

View Article and Find Full Text PDF