Publications by authors named "Robert G Cook"

Separating and isolating the contributions of perception to concept formation in animals has been a long-standing and persistent challenge. Here we describe a novel approach to assessing this question by using equivalence training consisting of unrelated images as the basis for subsequent same/different (S/D) learning. Following equivalence class training, two groups of pigeons attempted to learn a go/no-go discrimination task constructed from these classes.

View Article and Find Full Text PDF

Past studies have shown that pigeons can learn complex categories and can also remember large numbers of individual objects. In recent work, Cook et al. Psychonomic Bulletin & Review, 28, 548-555, (2021) provided evidence that pigeons may use a dynamic combination of both category-based information and item-specific memorization to solve a categorical variation of the mid-session reversal (MSR) task, which is an influential task for exploring the nature of temporally organized behaviors in animals.

View Article and Find Full Text PDF

Telling that one object or moment is different from another one is fundamental to cognition and intelligent behavior. Most investigations examining same/different (S/D) concepts in animals have relied on testing static visual stimuli. To move beyond this limitation, we investigated how five pigeons learned and performed a motion S/D discrimination.

View Article and Find Full Text PDF

Most animals engage in complex activities that are the combination of simpler actions expressed over a period of time. The mechanisms organizing such sequential behavior have been of long-standing biological and psychological interest. Previously, we observed pigeons' anticipatory behavior with a within-session sequence involving four choice alternatives suggestive of a potential understanding of the overall order and sequence of the items within a session.

View Article and Find Full Text PDF

Identifying the behaviors of organisms is essential for an animal's survival. This ability is particularly challenged when the "actors" are dynamically occluded by other objects and become fragmented as they move through an environment. Even when fragmented in time and across space, humans readily recognize the behavior of these dynamically occluded objects and actors.

View Article and Find Full Text PDF

Correctly and efficiently selecting among options is critical to the organization of behavior across different time scales (minutes, days, seasons). As a result, understanding the mechanisms underlying the sequential behavior of animals has been a long-standing aim. In three experiments, four pigeons were tested in a four-choice simultaneous color discrimination.

View Article and Find Full Text PDF

An important challenge for animal and artificial visual systems is separating the system's own motions from the movements of other animals or events. To examine this issue in birds, we conducted three experiments testing four pigeons in a go/no-go action discrimination. The pigeons discriminated whether a digital human model was exhibiting an extended series of articulated motions or one of a set of static poses from the same video.

View Article and Find Full Text PDF

Detecting global patterns in the environment is essential to object perception and recognition. Consistent with this, pigeons have been shown to readily detect and locate geometrically arranged, structured targets embedded in randomized backgrounds. Here we show for the first time that pigeons can detect and localize trial-unique targets derived solely from global patterns resulting from periodicity, symmetry and their combination using randomly generated segments of black and white local elements.

View Article and Find Full Text PDF

To study comparative attentional allocation strategies, pigeons and humans were tested using simultaneously available discrimination tasks. Given visual search displays containing 32 items from two orthogonal dimensions, participants were reinforced for selecting the eight brightest (or darkest) of 16 brightness items and the eight most vertical (or horizontal) of 16 orientation items. Consistent with a sequential dimensional strategy, humans preferentially chose items from one dimension before switching to the other to complete the search.

View Article and Find Full Text PDF

An innovative adaptive discrimination procedure examined how two bird species, pigeons and starlings, recognize and discriminate two-dimensional (2D) visual shapes. Prior results suggest a comparative divergence between mammals and birds in their relative reliance on vertices versus line segments to mediate discrimination. To address this potentially important difference, four pigeons and five starlings were tested with a square versus triangle discrimination in two experiments.

View Article and Find Full Text PDF

The current experiments used categorical mid-session reversal (MSR) to examine how eight pigeons utilized categorical and item-specific mechanisms to learn and solve a novel variation of this task. Employing a fixed order of trial-unique pictorial items from two categories (flowers and cars) on each simultaneous discrimination trial, categorical and item-specific information was available during each session's 80 trials. Choices to one category were rewarded for the first 40 trials, after which the correct category was reversed (e.

View Article and Find Full Text PDF

The perception of a complex scene requires visual mechanisms that include identifying objects and their relative placement in depth. To examine apparent depth perception in birds, we tested four pigeons with a novel multiple-sequential-choice procedure. We created 3D-rendered scene stimuli containing three objects located at different apparent depths based on a variety of pictorial cues and placed small circular target response areas on them.

View Article and Find Full Text PDF

Behavior requires an actor. Two experiments using complex conditional action discriminations examined whether pigeons privilege information related to the digital actor who is engaged in behavior. In Experiment 1, each of two video displays contained a digital model, one an actor engaged in one of two behaviors (Indian dance or martial arts) and one a neutrally posed bystander.

View Article and Find Full Text PDF

Wild-caught European starlings (Sturnus vulgaris) were exposed to a learning task to determine whether heart rate (HR) and behavior responses to the learning activated the sympathetic nervous system. Birds learned to discriminate between images of opposite convexity (concave and convex) based on shading cues in a closed economy (food only available through task completion). Once learned, the task was changed in three ways: (a) manipulating the angle and shape of the image; (b) altering the availability of the task; and (c) reversing the positive stimulus.

View Article and Find Full Text PDF

Whether animals experience visual illusions is a fertile area of study for examining the evolution and operation of visual cognition across different species. Here, five starlings were tested to examine whether they experienced the Ebbinghaus-Titchener illusion. Across two experiments using an absolute target circle size discrimination, the size, similarity, distance, and number of the surrounding flankers were manipulated.

View Article and Find Full Text PDF

Background: Natural disasters are increasing in their frequency and complexity. Understanding how their cascading effects can lead to infectious disease outbreaks is important for developing cross-sectoral preparedness strategies. The review focussed on earthquakes and floods because of their importance in Europe and their potential to elucidate the pathways through which natural disasters can lead to infectious disease outbreaks.

View Article and Find Full Text PDF

Advanced cognitive tasks are encoded in distributed neocortical circuits that span multiple forebrain areas. Nonetheless, synaptic plasticity and neural network theories hypothesize that essential information for performing these tasks is encoded in specific ensembles within these circuits. Relatively simpler subcortical areas contain specific ensembles that encode learning, suggesting that neocortical circuits contain such ensembles.

View Article and Find Full Text PDF

Categorization is an essential cognitive process useful for transferring knowledge from previous experience to novel situations. The mechanisms by which trained categorization behavior extends to novel stimuli, especially in animals, are insufficiently understood. To understand how pigeons learn and transfer category membership, seven pigeons were trained to classify controlled, bi-dimensional stimuli in a two-alternative forced-choice task.

View Article and Find Full Text PDF

The simultaneous processing and attention to temporally dynamic and static features remains an open and important question in theories of avian visual cognition. Here, four pigeons (Columba livia) learned to discriminate complex displays involving concurrently available static and dynamic features. These displays consisted of 20 elements built from combinations of two, binary-valued, static visual dimensions: red vs.

View Article and Find Full Text PDF

Purpose: Stroke is a leading cause of death and disability, although studies show that 90% of strokes can be prevented. The evidence base for stroke prevention is well established, and this study aimed to investigate how well European countries are adopting the European Society of Cardiology (ESC) guidelines, particularly toward implementation of the recommended best practice in stroke prevention.

Materials And Methods: We developed a stroke prevention scorecard - populated with World Health Organization (WHO) data, secondary research, time-series data, and a survey of 550 physicians - to benchmark 11 European countries in the context of the ESC guidelines.

View Article and Find Full Text PDF

Clark's nutcrackers exhibit remarkable cache recovery behavior, remembering thousands of seed locations over the winter. No direct laboratory test of their visual memory capacity, however, has yet been performed. Here, two nutcrackers were tested in an operant procedure used to measure different species' visual memory capacities.

View Article and Find Full Text PDF

Synaptic plasticity and neural network theories hypothesize that the essential information for advanced cognitive tasks is encoded in specific circuits and neurons within distributed neocortical networks. However, these circuits are incompletely characterized, and we do not know if a specific discrimination is encoded in characteristic circuits among multiple animals. Here, we determined the spatial distribution of active neurons for a circuit that encodes some of the essential information for a cognitive task.

View Article and Find Full Text PDF

What are the mechanisms by which behavior is organized sequentially over time? The recently developed mid-session reversal (MSR) task offers new insights into this fundamental question. The typical MSR task is arranged to have a single reversed discrimination occurring in a consistent location within each session and across sessions. In this task, we examine the relevance of time, reinforcement, and other factors as the in the sequential modulation of control in MSR.

View Article and Find Full Text PDF

The biological mechanisms used to categorize and recognize behaviors are poorly understood in both human and non-human animals. Using animated digital models, we have recently shown that pigeons can categorize different locomotive animal gaits and types of complex human behaviors. In the current experiments, pigeons (go/no-go task) and humans (choice task) both learned to conditionally categorize two categories of human behaviors that did not repeat and were comprised of the coordinated motions of multiple limbs.

View Article and Find Full Text PDF

The systematic anticipation and preservation errors produced by pigeons around the reversal point in midsession reversal (MSR) learning experiments suggest that an internal time estimation cue, instead of a more efficient external cue provided by reinforcement, controls behavior over the course of a session. The current experiments examined the role and effectiveness of other external cues in the MSR task. In Experiment 1, providing differential outcomes based on response key location produced fewer errors prior to, but not after, the reversal as compared with a non-differential outcomes condition.

View Article and Find Full Text PDF