Publications by authors named "Robert Fyffe"

The spatial and temporal balance of spinal α-motoneuron (αMN) intrinsic membrane conductances underlies the neural output of the final common pathway for motor commands. Although the complete set and precise localization of αMN K channels and their respective outward conductances remain unsettled, important K channel subtypes have now been documented, including Kv1, Kv2, Kv7, TASK, HCN and SK isoforms. Unique kinetics and gating parameters allow these channels to differentially shape and/or modify αMN firing properties, and recent immunohistochemical localization of K -channel complexes reveals a framework in which their spatial distribution and/or focal clustering within different surface membrane compartments is highly tuned to their physiological function.

View Article and Find Full Text PDF

Key Points: Kv2 currents maintain and regulate motoneuron (MN) repetitive firing properties. Kv2.1 channel clustering properties are dynamic and respond to both high and low activity conditions.

View Article and Find Full Text PDF

The characteristic signaling and intraspinal projections of muscle proprioceptors best described in the cat are often generalized across mammalian species. However, species-dependent adaptations within this system seem necessary to accommodate asymmetric scaling of length, velocity, and force information required by the physics of movement. In the present study we report mechanosensory responses and intraspinal destinations of three classes of muscle proprioceptors.

View Article and Find Full Text PDF

Homeostatic plasticity occurs through diverse cellular and synaptic mechanisms, and extensive investigations over the preceding decade have established Kv2.1 ion channels as key homeostatic regulatory elements in several central neuronal systems. As in these cellular systems, Kv2.

View Article and Find Full Text PDF

C-boutons are important cholinergic modulatory loci for state-dependent alterations in motoneuron firing rate. m2 receptors are concentrated postsynaptic to C-boutons, and m2 receptor activation increases motoneuron excitability by reducing the action potential afterhyperpolarization. Here, using an intensive review of the current literature as well as data from our laboratory, we illustrate that C-bouton postsynaptic sites comprise a unique structural/functional domain containing appropriate cellular machinery (a "signaling ensemble") for cholinergic regulation of outward K(+) currents.

View Article and Find Full Text PDF

Pathophysiological responses to peripheral nerve injury include alterations in the activity, intrinsic membrane properties and excitability of spinal neurons. The intrinsic excitability of α-motoneurons is controlled in part by the expression, regulation, and distribution of membrane-bound ion channels. Ion channels, such as Kv2.

View Article and Find Full Text PDF

Small-conductance calcium-activated potassium (SK) channels mediate medium after-hyperpolarization (AHP) conductances in neurons throughout the central nervous system. However, the expression profile and subcellular localization of different SK channel isoforms in lumbar spinal α-motoneurons (α-MNs) is unknown. Using immunohistochemical labelling of rat, mouse and cat spinal cord, we reveal a differential and overlapping expression of SK2 and SK3 isoforms across specific types of α-MNs.

View Article and Find Full Text PDF

The development of cochlear implants for the treatment of patients with profound hearing loss has advanced considerably in the last few decades, particularly in the field of speech comprehension. However, attempts to provide not only sound decoding but also spatial hearing are limited by our understanding of circuit adaptations in the absence of auditory input. Here we investigate the lateral superior olive (LSO), a nucleus involved in interaural level difference (ILD) processing in the auditory brainstem using a mouse model of congenital deafness (the dn/dn mouse).

View Article and Find Full Text PDF

The auditory system provides a valuable experimental model to investigate the role of sensory activity in regulating neuronal membrane properties. In this study, we have investigated the role of activity directly by measuring changes in medial nucleus of the trapezoid body (MNTB) neurons in normal hearing mice subjected to 1-h sound stimulation. Broadband (4-12 kHz) chirps were used to activate MNTB neurons tonotopically restricted to the lateral MNTB, as confirmed by c-Fos-immunoreactivity.

View Article and Find Full Text PDF

MicroRNAs are known to regulate the expression of many mRNAs by binding to complementary target sequences at the 3'UTRs. Because of such properties, miRNAs may regulate tissue-specific mRNAs as a cell undergoes transdifferentiation during regeneration. We have tested this hypothesis during lens and hair cell regeneration in newts using microarray analysis.

View Article and Find Full Text PDF

Renshaw cell properties have been studied extensively for over 50 years, making them a uniquely well-defined class of spinal interneuron. Recent work has revealed novel ways to identify Renshaw cells in situ and this in turn has promoted a range of studies that have determined their ontogeny and organization of synaptic inputs in unprecedented detail. In this review we illustrate how mature Renshaw cell properties and connectivity arise through a combination of activity-dependent and genetically specified mechanisms.

View Article and Find Full Text PDF

Background: The molecular mechanism of K-Cl cotransport (KCC) consists of at least 4 isoforms, KCC 1, 2, 3, and 4 which, in multiple combinations, exist in most cells, including erythrocytes and neuronal cells.

Methods: We utilized reverse-transcriptase-polymerase chain reaction (RT-PCR) and ion flux studies to characterize KCC activity in an immortalized in vitro cell model for fibrous astrocytes, the rat C6 glioblastoma cell. Isoform-specific sets of oligonucleotide primers were synthesized for NKCC1, KCC1, KCC2, KCC3, KCC4, and also for NKCC1 and actin.

View Article and Find Full Text PDF

1. Ion gradients across the cell membrane are important for proper cellular communication and homeostasis. With the exception of erythrocytes, chloride (Cl), one of the most important free anions in animal cells, is not distributed at thermodynamic equilibrium across the plasma membrane.

View Article and Find Full Text PDF

The hyperpolarization-activated cation current (I(h)) may influence precise auditory processing by modulating resting membrane potential and cell excitability. We used electrophysiology and immunohistochemistry to investigate the properties of I(h) in three auditory brainstem nuclei in mice: the anteroventral cochlear nucleus (AVCN), the medial nucleus of the trapezoid body (MNTB) and the lateral superior olive (LSO). I(h) amplitude varied considerably between these cell types, with the order of magnitude LSO > AVCN > MNTB.

View Article and Find Full Text PDF

Neural activity plays an important role in regulating synaptic strength and neuronal membrane properties. Attempts to establish guiding rules for activity-dependent neuronal changes have led to such concepts as homeostasis of cellular activity and Hebbian reinforcement of synaptic strength. However, it is clear that there are diverse effects resulting from activity changes, and that these changes depend on the experimental preparation, and the developmental stage of the neural circuits under study.

View Article and Find Full Text PDF

There is an orderly topographic arrangement of neurones within auditory brainstem nuclei based on sound frequency. Previous immunolabelling studies in the medial nucleus of the trapezoid body (MNTB) have suggested that there may be gradients of voltage-gated currents underlying this tonotopic arrangement. Here, our electrophysiological and immunolabelling results demonstrate that underlying the tonotopic organization of the MNTB is a combination of medio-lateral gradients of low-and high-threshold potassium currents and hyperpolarization-activated cation currents.

View Article and Find Full Text PDF

Sheep K-Cl cotransporter-1(shKCC1) cDNA was cloned from kidney by RT-PCR with an open reading frame of 3258 base pairs exhibiting 92%, 90%, 88% and 87% identity with pig, rabbit and human, rat and mouse KCC1 cDNAs, respectively, encoding an approximately 122 kDa polypeptide of 1086-amino acids. Hydropathy analysis reveals the familiar KCC1 topology with 12 transmembrane domains (TMDs) and the hydrophilic NH2-terminal (NTD) and COOH-terminal (CTD) domains both at the cytoplasmic membrane face. However, shKCC1 has two rather than one large extracellular loops (ECL): ECL3 between TMDs 5 and 6, and ECL6, between TMDs 11 and 12.

View Article and Find Full Text PDF
Article Synopsis
  • Inhibitory inputs to Renshaw cells are mostly found on their soma and nearby dendrites, and this study examined how this distribution impacts synaptic inhibition under varying conditions.
  • Researchers created detailed models of Renshaw cells and tested the effectiveness of the inhibitory neurotransmitters glycine and GABA(A) when applied close to the cell body versus evenly across the neuron.
  • The findings revealed that inhibiting inputs closer to the soma is consistently more effective, particularly under high excitation conditions, suggesting that the strategic placement of these synapses helps counter strong excitatory signals from neighboring motoneurons.
View Article and Find Full Text PDF

The cellular mechanism for Cl(-) and K(+) secretion in the colonic epithelium requires K(+) channels in the basolateral and apical membranes. Colonic mucosa from guinea pig and rat were fixed, sectioned, and then probed with antibodies to the K(+) channel proteins K(V)LQT1 (Kcnq1) and minK-related peptide 2 (MiRP2, Kcne3). Immunofluorescence labeling for Kcnq1 was most prominent in the lateral membrane of crypt cells in rat colon.

View Article and Find Full Text PDF

Adenosine 5'-triphosphate (ATP) may regulate neurotransmission in the CNS by activating presynaptic and/or postsynaptic P2X (P2X1-P2X7) ionotropic receptors. P2X7 purinergic receptors have been shown to modulate transmitter release at excitatory synapses in the hippocampus and have been localized in glutamatergic terminals in several CNS regions. Here, we analyze P2X7-immunoreactivity (IR) in a variety of immunohistochemically identified excitatory and inhibitory presynaptic terminals in the spinal cord ventral horn, including cholinergic C-terminals and motor axon collaterals and glutamatergic terminals that express VGLUT1- or VGLUT2-IR.

View Article and Find Full Text PDF

Purpose: Voltage-gated K(+) channels maintain salt and water balance and normal function of corneal epithelial cells. To determine their identity, Kv channel types were sought in cultured rabbit corneal epithelial cells and in the intact rat corneal epithelium.

Methods: Immunohistochemistry and Western blot analysis were performed to detect K(+) channels in the membrane and cell lysates of rat and SV-40-transformed rabbit corneal epithelial (RCE) cells, using specific antibodies.

View Article and Find Full Text PDF

Hyperpolarization-activated cyclic nucleotide gated (HCN) channel subunits are distributed widely, but selectively, in the central nervous system, and underlie hyperpolarization-activated currents (I(h)) that contribute to rhythmicity in a variety of neurons. This study investigates, using current and voltage-clamp techniques in brain slices from young mice, the properties of I(h) currents in medial septum/diagonal band (MS/DB) neurons. Subsets of neurons in this complex, including GABAergic and cholinergic neurons, innervate the hippocampal formation, and play a role in modulating hippocampal theta rhythm.

View Article and Find Full Text PDF

We have investigated the fundamental properties of central auditory glycinergic synapses in early postnatal development in normal and congenitally deaf (dn/dn) mice. Glycinergic miniature inhibitory postsynaptic currents (mIPSCs) were recorded using patch-clamp methods in neurons from a brain slice preparation of the medial nucleus of the trapezoid body (MNTB), at 12-14 days postnatal age. Our results show a number of significant differences between normal and deaf mice.

View Article and Find Full Text PDF

Hereditary canine spinal muscular atrophy (HCSMA) is an autosomal dominant degenerative disorder of motor neurons. In homozygous animals, motor units produce decreased force output and fail during repetitive activity. Previous studies suggest that decreased efficacy of neuromuscular transmission underlies these abnormalities.

View Article and Find Full Text PDF