Publications by authors named "Robert Frayer"

Background: Ewing sarcoma (ES), a highly aggressive tumor of children and young adults, is characterized most commonly by an 11;22 chromosomal translocation that fuses EWSR1 located at 22q12 with FLI1, coding for a member of the ETS family of transcription factors. Although genetic changes in ES have been extensively researched, our understanding of the role of epigenetic modifications in this neoplasm is limited.

Procedure: In an effort to improve our knowledge in the role of epigenetic changes in ES we evaluated the in vitro antineoplastic effect of the DNA methyltransferase inhibitor 5-Aza-deoxycytidine (5-Aza-dC) and identified epigenetically silenced genes by pharmacologic unmasking of DNA methylation coupled with genome-wide expression profiling.

View Article and Find Full Text PDF

Over 90% of Ewing sarcoma/primitive neuroectodermal tumors (PNETs) feature an 11;22 translocation leading to an EWSR1-FLI1 fusion. Less commonly, a member of the ETS-transcription factor family other than FLI1 is fused with EWSR1. In this study, cytogenetic analysis of an extraskeletal Ewing sarcoma/PNET revealed a novel chromosomal translocation t(4;22)(q31;q12) as the sole anomaly.

View Article and Find Full Text PDF

The fusion oncoproteins PAX3-FOXO1 [t(2;13)(q35;q14)] and PAX7-FOXO1 [t(1;13)(p36;q14)] typify alveolar rhabdomyosarcoma (ARMS); however, 20-30% of cases lack these specific translocations. In this study, cytogenetic and/or molecular characterization to include FISH, reverse transcription polymerase chain reaction (RT-PCR), and sequencing analyses of five rhabdomyosarcomas [four ARMS and one embryonal rhabdomyosarcoma (ERMS)] with novel, recurrent t(2;2)(p23;q35) or t(2;8)(q35;q13) revealed that these noncanonical translocations fuse PAX3 to NCOA1 or NCOA2, respectively. The PAX3-NCOA1 and PAX3-NCOA2 transcripts encode chimeric proteins composed of the paired-box and homeodomain DNA-binding domains of PAX3, and the CID domain, the Q-rich region, and the activation domain 2 (AD2) domain of NCOA1 or NCOA2.

View Article and Find Full Text PDF

Missense mutations in perforin, a critical effector of lymphocyte cytotoxicity, lead to a spectrum of diseases, from familial hemophagocytic lymphohistiocytosis to an increased risk of tumorigenesis. Understanding of the impact of mutations has been limited by an inability to express human perforin in vitro. We have shown, for the first time to our knowledge, that recombinant human perforin is expressed, processed appropriately, and functional in rat basophilic leukemia (RBL) cells following retroviral transduction.

View Article and Find Full Text PDF