Publications by authors named "Robert Finking"

Modeling the potential of chemicals to induce chromosomal damage has been hampered by the diversity of mechanisms which condition this biological effect. The direct binding of a chemical to DNA is one of the underlying mechanisms that is also responsible for bacterial mutagenicity. Disturbance of DNA synthesis due to inhibition of topoisomerases and interaction of chemicals with nuclear proteins associated with DNA (e.

View Article and Find Full Text PDF

The surface charge as well as the electrochemical properties and ligand binding abilities of the Gram-positive cell wall is controlled by the D-alanylation of the lipoteichoic acid. The incorporation of D-Ala into lipoteichoic acid requires the D-alanine:D-alanyl carrier protein ligase (DltA) and the carrier protein (DltC). We have heterologously expressed, purified, and assayed the substrate selectivity of the recombinant proteins DltA with its substrate DltC.

View Article and Find Full Text PDF

Bacteria and fungi use large multifunctional enzymes, the so-called nonribosomal peptide synthetases (NRPSs), to produce peptides of broad structural and biological activity. Biochemical studies have contributed substantially to the understanding of the key principles of these modular enzymes that can draw on a much larger number of catalytic tools for the incorporation of unusual features compared with the ribosomal system. Several crystal structures of NRPS-domains have yielded deep insight into the catalytic mechanisms involved and have led to a better prediction of the products assembled and to the construction of hybrid enzymes.

View Article and Find Full Text PDF

4'-Phosphopantetheinyl transferases (PPTases) are essential for the production of fatty acids by fatty acid synthases (primary metabolism) and natural products by nonribosomal peptide synthetases and polyketide synthases (secondary metabolism). These systems contain carrier proteins (CPs) for the covalent binding of reaction intermediates during synthesis. PPTases transfer the 4'-phosphopantetheine moiety from coenzyme A (CoA) onto conserved serine residues of the apo-CPs to convert them to their functionally active holo form.

View Article and Find Full Text PDF

The activation of apo-peptidyl carrier proteins (PCPs) of nonribosomal peptide synthetases (NRPSs), apo-acyl carrier proteins (ACPs) of polyketide synthases (PKSs), and fatty acid synthases (FASs) to their active holo form is accomplished with dedicated 4'-phosphopantetheinyl transferases (PPTases). They catalyze the transfer of the essential prosthetic group 4'-phosphopantetheine (4'-Ppant) from coenzyme A (CoA) to a highly conserved serine residue in all PCPs and ACPs. PPTases, based on sequence and substrate specifity, have been classified into three types: bacterial holo-acyl carrier protein synthase (AcpS), fatty acid synthase of eukaryotes (FAS2) and Sfp, a PPTase of secondary metabolism.

View Article and Find Full Text PDF

The ability to synthesize nonribosomally small bioactive peptides that find application in modern medicine is widely spread among microorganisms. As broad as the spectrum of biological activities is the structural diversity of these peptides, which are mostly cyclic or branched cyclic compounds containing non-proteinogenic amino acids, small heterocyclic rings and other unusual modifications in the peptide backbone. They are synthesized by multimodular enzymes, the so-called nonribosomal peptide synthetases (NRPSs), from simple building blocks.

View Article and Find Full Text PDF

Phosphopantetheinyl-dependent carrier proteins are part of fatty-acid synthases (primary metabolism), polyketide synthases, and non-ribosomal peptide synthetases (secondary metabolism). For these proteins to become functionally active, they need to be primed with the 4'-phosphopantetheine moiety of coenzyme A by a dedicated phosphopantetheine transferase (PPTase). Most organisms that employ more than one phosphopantetheinyl-dependent pathway also have more than one PPTase.

View Article and Find Full Text PDF

The acyl carrier proteins (ACPs) of fatty acid synthase and polyketide synthase as well as peptidyl carrier proteins (PCPs) of nonribosomal peptide synthetases are modified by 4'-phosphopantetheinyl transferases from inactive apo-enzymes to their active holo forms by transferring the 4'-phosphopantetheinyl moiety of coenzyme A to a conserved serine residue of the carrier protein. 4'-Phosphopantetheinyl transferases have been classified into two types; the AcpS type accepts ACPs of fatty acid synthase and some ACPs of type II polyketide synthase as substrates, whereas the Sfp type exhibits an extraordinarily broad substrate specificity. Based on the previously published co-crystal structure of Bacillus subtilis AcpS and ACP that provided detailed information about the interacting residues of the two proteins, we designed a novel hybrid PCP by replacing the Bacillus brevis TycC3-PCP helix 2 with the corresponding helix of B.

View Article and Find Full Text PDF