Publications by authors named "Robert Fajardo"

Implant design for bone regeneration is expected to be optimized when implant structures resemble the anatomical situation of the defect site. We tested the validity of this hypothesis by exploring the feasibility of generating different in vitro engineered bone-like structures originating from porous silk fibroin scaffolds decorated with RGD sequences (SF-RGD), seeded with human mesenchymal stem cells (hMSC). Scaffolds with small (106-212 μm), medium (212-300 μm), and large pore diameter ranges (300-425 μm) were seeded with hMSC and subsequently differentiated in vitro into bone-like tissue resembling initial scaffold geometries and featuring bone-like structures.

View Article and Find Full Text PDF

Human mesenchymal stem cells (hMSCs) isolated from bone marrow aspirates were cultured on silk scaffolds in rotating bioreactors for three weeks with either chondrogenic or osteogenic medium supplements to engineer cartilage- or bone-like tissue constructs. Osteochondral composites formed from these cartilage and bone constructs were cultured for an additional three weeks in culture medium that was supplemented with chondrogenic factors, supplemented with osteogenic factors or unsupplemented. Progression of cartilage and bone formation and the integration between the two regions were assessed by medical imaging (magnetic resonance imaging and micro-computerized tomography imaging), and by biochemical, histological and mechanical assays.

View Article and Find Full Text PDF

Human bone marrow contains a population of bone marrow stromal cells (hBMSCs) capable of forming several types of mesenchymal tissues, including bone and cartilage. The present study was designed to test whether large cartilaginous and bone-like tissue constructs can be selectively engineered using the same cell population (hBMSCs), the same scaffold type (porous silk) and same hydrodynamic environment (construct settling in rotating bioreactors), by varying the medium composition (chondrogenic vs. osteogenic differentiation factors).

View Article and Find Full Text PDF

Bone tissue engineering, gene therapy based on human mesenchymal stem cells (MSCs) and silk fibroin biomaterials were combined to study the impact of viral transfection on MSC osteogenic performance in vitro. MSCs were transduced with adenovirus containing a human BMP-2 (Ad-BMP-2) gene at clinically reasonable viral concentrations and cultured for 4 weeks. Controls with nontransfected MSCs, but exposed to exogenous BMP-2 concentrations on an analogous time profile as that secreted by the Ad-BMP-2 group, were compared.

View Article and Find Full Text PDF

Bone morphogenetic protein-2 (BMP-2) plays a key role in osteogenesis. Biomaterials used for the sustained delivery of BMP-2 in vivo have shown therapeutic benefits. In the present study, BMP-2 was loaded in porous silk fibroin scaffolds derived from silkworm cocoons (2.

View Article and Find Full Text PDF

Bone (re)-generation and bone fixation strategies utilize biomaterial implants, which are gradually replaced by autologous tissues. Ideally, these biomaterials should be biodegradable, osteoconductive, and provide mechanical strength and integrity until newly formed host tissues can maintain function. Some protein-based biomaterials such as collagens are promising because of their biological similarities to natural proteins on bone surfaces.

View Article and Find Full Text PDF

Porous biodegradable silk scaffolds and human bone marrow derived mesenchymal stem cells (hMSCs) were used to engineer bone-like tissue in vitro. Two different scaffolds with the same microstructure were studied: collagen (to assess the effects of fast degradation) and silk with covalently bound RGD sequences (to assess the effects of enhanced cell attachment and slow degradation). The hMSCs were isolated, expanded in culture, characterized with respect to the expression of surface markers and ability for chondrogenic and osteogenic differentiation, seeded on scaffolds, and cultured for up to 4 weeks.

View Article and Find Full Text PDF

We report studies of bone tissue engineering using human mesenchymal stem cells (MSCs), a protein substrate (film or scaffold; fast degrading unmodified collagen, or slowly degrading cross-linked collagen and silk), and a bioreactor (static culture, spinner flask, or perfused cartridge). MSCs were isolated from human bone marrow, characterized for the expression of cell surface markers and the ability to undergo chondrogenesis and osteogenesis in vitro, and cultured for 5 weeks. MSCs were positive for CD105/endoglin, and had a potential for chondrogenic and osteogenic differentiation.

View Article and Find Full Text PDF