Publications by authors named "Robert F Rogers"

While supraspinal mechanisms underlying respiratory pattern formation are well characterized, the contribution of spinal circuitry to the same remains poorly understood. In this study, we tested the hypothesis that intraspinal GABAergic circuits are involved in shaping phrenic motor output. To this end, we performed bilateral phrenic nerve recordings in anesthetized adult rats and observed neurogram changes in response to knocking down expression of both isoforms (65 and 67 kDa) of glutamate decarboxylase (GAD65/67) using microinjections of anti-GAD65/67 short-interference RNA (siRNA) in the phrenic nucleus.

View Article and Find Full Text PDF

Fast oscillations are ubiquitous throughout the mammalian central nervous system and are especially prominent in respiratory motor outputs, including the phrenic nerves (PhNs). Some investigators have argued for an epiphenomenological basis for PhN high-frequency oscillations because phrenic motoneurons (PhMNs) firing at these same frequencies have never been recorded, although their existence has never been tested systematically. Experiments were performed on 18 paralyzed, unanesthetized, decerebrate adult rats in which whole PhN and individual PhMN activity were recorded.

View Article and Find Full Text PDF

Slowly adapting pulmonary stretch receptors (SARs) respond to different lung inflation volumes with distinct spike counts and patterns, conveying information regarding the rate and depth of breathing to the cardiovascular and respiratory control systems. Previous studies demonstrated that SARs respond to repetitions of the same lung inflation faithfully, suggesting the possibility of modeling an SAR's discrete response pattern to a stimulus using a statistically based method. Urethane-anesthetized rabbit SAR spike trains were recorded in response to repeated 9-, 12-, and 15-ml lung inflations, and used to construct model spike trains using K-means clustering.

View Article and Find Full Text PDF

Slowly adapting pulmonary stretch receptors (SARs) provide the respiratory and cardiovascular control systems with information regarding the rate and depth of breathing. Previous information theoretical analysis demonstrated that SAR spike count provides a reliable representation of lung distension. This study examines whether SAR spike patterns may also provide information about lung distension.

View Article and Find Full Text PDF

One of the characteristics of respiratory motor output is the presence of fast synchronous oscillations, at rates far exceeding the basic breathing rhythm, within a given functional population. However, the mechanisms responsible for organizing phrenic output into two dominant bands in vivo, medium (MFO)- and high (HFO)-frequency oscillations, have yet to be elucidated. We hypothesize that GABA(A)ergic and glycinergic inhibition within the phrenic motor nucleus underlies the specific organization of these oscillations.

View Article and Find Full Text PDF

Peri-stimulus time histograms (PSTHs) reveal the temporal distribution of action potentials, averaged over many stimulus presentations. PSTHs have been used as model responses to solve the classification problem, in which a single response (i.e.

View Article and Find Full Text PDF

Baroreceptor afferents project to the cardiovascular region of the nucleus tractus solitarius (cvNTS), and their cvNTS target neurons may play a role in governing the sensitivity and operating range of the arterial baroreceptor reflex (baroreflexes). Recent studies have shown differential gene and protein expression in the cvNTS in response to changed arterial pressure. However, the extent of these responses is unknown.

View Article and Find Full Text PDF

The aim of the present study was to determine characteristics of fast oscillations in the juvenile rat phrenic nerve (Ph) and to establish their temperature and state dependence. Two different age-matched decerebrate, baro- and chemodenervated rat preparations, in vivo and in situ arterially perfused models, were used to examine three systemic properties: 1) generation and dynamics of fast oscillations in Ph activity (both preparations), 2) responses to anoxia (both preparations), and 3) the effects of temperature on fast oscillations (in situ only). Both juvenile preparations generated power and coherence in two major bands analogous to adult medium- and high-frequency oscillations (HFO) at frequencies that increased with temperature but were lower than in adults.

View Article and Find Full Text PDF

Respiratory control requires feedback signals from the viscera, including mechanoreceptors and chemoreceptors. We previously showed that typical pulmonary stretch receptor (PSR) spike trains provide the central nervous system with approximately 31% of the theoretical maximum information regarding the amplitude of lung distension. However, it is unknown whether the spatiotemporal convergence of many PSR inputs onto second-order neurons (e.

View Article and Find Full Text PDF

Respiratory motor outputs contain medium-(MFO) and high-frequency oscillations (HFO) that are much faster than the fundamental breathing rhythm. However, the associated changes in power spectral characteristics of the major respiratory outputs in unanesthetized animals during the transition from normal eupneic breathing to hypoxic gasping have not been well characterized. Experiments were performed on nine unanesthetized, chemo- and barodenervated, decerebrate adult rats, in which asphyxia elicited hyperpnea, followed by apnea and gasping.

View Article and Find Full Text PDF

Fast respiratory rhythms include medium- (MFO) and high-frequency oscillations (HFO), which are much faster than the fundamental breathing rhythm. According to previous studies, HFO is characterized by high coherence (Coh) in phrenic (Ph) nerve activity, thereby providing a means of distinguishing between these two types of oscillations. Changes in Coh between the Ph and hypoglossal (XII) nerves during the transition from normal eupnic breathing to gasping have not been characterized.

View Article and Find Full Text PDF

One of the most important brain rhythms is that which generates involuntary breathing movements. The lower brain stem contains neural circuitry for respiratory rhythm generation in mammals. To date, microsectioning and selective lesioning studies have revealed anatomical regions necessary for respiratory rhythmogenesis.

View Article and Find Full Text PDF