Publications by authors named "Robert F Hunt"

The zeta inhibitory peptide (ZIP) interferes with memory maintenance and long-term potentiation (LTP) when administered to mice. However, mice lacking its putative target, protein kinase PKMζ, exhibit normal learning and memory as well as LTP, making the mechanism of ZIP unclear. Here we show that ZIP disrupts LTP by removing surface AMPA receptors through its cationic charge alone.

View Article and Find Full Text PDF

Undifferentiated neural stem and progenitor cells (NSPCs) encounter extracellular signals that bind plasma membrane proteins and influence differentiation. Membrane proteins are regulated by N-linked glycosylation, making it possible that glycosylation plays a critical role in cell differentiation. We assessed enzymes that control N-glycosylation in NSPCs and found that loss of the enzyme responsible for generating β1,6-branched N-glycans, N-acetylglucosaminyltransferase V (MGAT5), led to specific changes in NSPC differentiation in vitro and in vivo.

View Article and Find Full Text PDF

Neurexins (Nrxns) have been extensively studied for their role in synapse organization and have been linked to many neuropsychiatric disorders, including autism spectrum disorder (ASD), and epilepsy. However, no studies have provided direct evidence that Nrxns may be the key regulator in the shared pathogenesis of these conditions largely due to complexities among Nrxns and their non-canonical functions in different synapses. Recent studies identified NRXN2 mutations in ASD and epilepsy, but little is known about Nrxn2's role in a circuit-specific manner.

View Article and Find Full Text PDF

Despite the fundamental importance of understanding the brain's wiring diagram, our knowledge of how neuronal connectivity is rewired by traumatic brain injury remains remarkably incomplete. Here we use cellular resolution whole-brain imaging to generate brain-wide maps of the input to inhibitory neurons in a mouse model of traumatic brain injury. We find that somatostatin interneurons are converted into hyperconnected hubs in multiple brain regions, with rich local network connections but diminished long-range inputs, even at areas not directly damaged.

View Article and Find Full Text PDF

Primary sensory areas of the mammalian neocortex have a remarkable degree of plasticity, allowing neural circuits to adapt to dynamic environments. However, little is known about the effects of traumatic brain injury on visual circuit function. Here we used anatomy and in vivo electrophysiological recordings in adult mice to quantify neuron responses to visual stimuli two weeks and three months after mild controlled cortical impact injury to primary visual cortex (V1).

View Article and Find Full Text PDF

Advances in genome sequencing have identified over 1300 mutations in the sodium channel gene that result in genetic epilepsies. However, it still remains unclear how most individual mutations within result in seizures. A previous study has shown that the K1270T (KT) mutation, linked to genetic epilepsy with febrile seizure plus (GEFS+) in humans, causes heat-induced seizure activity associated with a temperature-dependent decrease in GABAergic neuron excitability in a knock-in model.

View Article and Find Full Text PDF

Repair of the traumatically injured brain has been envisioned for decades, but regenerating new neurons at the site of brain injury has been challenging. We show GABAergic progenitors, derived from the embryonic medial ganglionic eminence, migrate long distances following transplantation into the hippocampus of adult mice with traumatic brain injury, functionally integrate as mature inhibitory interneurons and restore post-traumatic decreases in synaptic inhibition. Grafted animals had improvements in memory precision that were reversed by chemogenetic silencing of the transplanted neurons and a long-lasting reduction in spontaneous seizures.

View Article and Find Full Text PDF

Considerable evidence suggests loss-of-function mutations in the chromatin remodeler CHD2 contribute to a broad spectrum of human neurodevelopmental disorders. However, it is unknown how CHD2 mutations lead to impaired brain function. Here we report mice with heterozygous mutations in Chd2 exhibit deficits in neuron proliferation and a shift in neuronal excitability that included divergent changes in excitatory and inhibitory synaptic function.

View Article and Find Full Text PDF

Traumatic brain injury is a major risk factor for many long-term mental health problems. Although underlying mechanisms likely involve compromised inhibition, little is known about how individual subpopulations of interneurons are affected by neurotrauma. Here we report long-term loss of hippocampal interneurons following controlled cortical impact (CCI) injury in young-adult mice, a model of focal cortical contusion injury in humans.

View Article and Find Full Text PDF

A correction to this article has been published and is linked from the HTML version of this paper. The error has not been fixed in the paper.

View Article and Find Full Text PDF

Hemizygous mutations in the human gene encoding platelet-activating factor acetylhydrolase IB subunit alpha (Pafah1b1), also called Lissencephaly-1, can cause classical lissencephaly, a severe malformation of cortical development. Children with this disorder suffer from deficits in neuronal migration, severe intellectual disability, intractable epilepsy and early death. While many of these features can be reproduced in Pafah1b1 mice, the impact of Pafah1b1 on the function of individual subpopulations of neurons and ultimately brain circuits is largely unknown.

View Article and Find Full Text PDF

Stem-cell therapy has extraordinary potential to address critical, unmet needs in the treatment of human disease. One particularly promising approach for the treatment of epilepsy is to increase inhibition in areas of the epileptic brain by grafting new inhibitory cortical interneurons. When grafted from embryos, young γ-aminobutyric acid (GABA)ergic precursors disperse, functionally mature into host brain circuits as local-circuit interneurons, and can stop seizures in both genetic and acquired forms of the disease.

View Article and Find Full Text PDF

Little is known about genetic mechanisms that regulate the ratio of cortical excitatory and inhibitory neurons. We show that NPAS1 and NPAS3 transcription factors (TFs) are expressed in progenitor domains of the mouse basal ganglia (subpallium, MGE, and CGE). NPAS1(-/-) mutants had increased proliferation, ERK signaling, and expression of Arx in the MGE and CGE.

View Article and Find Full Text PDF

During brain development, neural progenitor cells proliferate and differentiate into neural precursors. These neural precursors migrate along the radial glial processes and localize at their final destination in the cortex. Numerous reports have revealed that 14-3-3 proteins are involved in many neuronal activities, although their functions in neurogenesis remain unclear.

View Article and Find Full Text PDF

Cortical GABAergic interneurons have essential roles for information processing and their dysfunction is implicated in neuropsychiatric disorders. Transcriptional codes are elucidating mechanisms of interneuron specification in the MGE (a subcortical progenitor zone), which regulate their migration, integration, and function within cortical circuitry. Lhx6, a LIM-homeodomain transcription factor, is essential for specification of MGE-derived somatostatin and parvalbumin interneurons.

View Article and Find Full Text PDF

Traumatic brain injury (TBI) greatly increases the risk for a number of mental health problems and is one of the most common causes of medically intractable epilepsy in humans. Several models of TBI have been developed to investigate the relationship between trauma, seizures, and epilepsy-related changes in neural circuit function. These studies have shown that the brain initiates immediate neuronal and glial responses following an injury, usually leading to significant cell loss in areas of the injured brain.

View Article and Find Full Text PDF

Impaired GABA-mediated neurotransmission has been implicated in many neurologic diseases, including epilepsy, intellectual disability and psychiatric disorders. We found that inhibitory neuron transplantation into the hippocampus of adult mice with confirmed epilepsy at the time of grafting markedly reduced the occurrence of electrographic seizures and restored behavioral deficits in spatial learning, hyperactivity and the aggressive response to handling. In the recipient brain, GABA progenitors migrated up to 1,500 μm from the injection site, expressed genes and proteins characteristic for interneurons, differentiated into functional inhibitory neurons and received excitatory synaptic input.

View Article and Find Full Text PDF

Type I lissencephaly, a neuronal migration disorder characterized by cognitive disability and refractory epilepsy, is often caused by heterozygous mutations in the LIS1 gene. Histopathologies of malformation-associated epilepsies have been well described, but it remains unclear whether hyperexcitability is attributable to disruptions in neuronal organization or abnormal circuit function. Here, we examined the effect of LIS1 deficiency on excitatory synaptic function in the dentate gyrus of hippocampus, a region believed to serve critical roles in seizure generation and learning and memory.

View Article and Find Full Text PDF

Febrile seizures are the most common seizure type in children under the age of five, but mechanisms underlying seizure generation in vivo remain unclear. Animal models to address this issue primarily focus on immature rodents heated indirectly using a controlled water bath or air blower. Here we describe an in vivo model of hyperthermia-induced seizures in larval zebrafish aged 3 to 7 days post-fertilization (dpf).

View Article and Find Full Text PDF

Controlled cortical impact injury was used to examine relationships between focal posttraumatic cortical damage and mossy fiber sprouting (MFS) in the dentate gyrus in three mouse strains. Posttraumatic MFS was more robust when cortical injury impinged upon the hippocampus, versus contusions restricted to neocortex, and was qualitatively similar among CD-1, C57BL/6, and FVB/N background strains. Impact parameters influencing injury severity may be critical in reproducing epilepsy-related changes in neurotrauma models.

View Article and Find Full Text PDF

Functional plasticity of synaptic networks in the dentate gyrus has been implicated in the development of posttraumatic epilepsy and in cognitive dysfunction after traumatic brain injury, but little is known about potentially pathogenic changes in inhibitory circuits. We examined synaptic inhibition of dentate granule cells and excitability of surviving GABAergic hilar interneurons 8-13 weeks after cortical contusion brain injury in transgenic mice that express enhanced green fluorescent protein in a subpopulation of inhibitory neurons. Whole-cell voltage-clamp recordings in granule cells revealed a reduction in spontaneous and miniature IPSC frequency after head injury; no concurrent change in paired-pulse ratio was found in granule cells after paired electrical stimulation of the hilus.

View Article and Find Full Text PDF

Posttraumatic epilepsy is a frequent consequence of brain trauma, but relatively little is known about how neuronal circuits are chronically altered after closed head injury. We examined whether local recurrent excitatory synaptic connections form between dentate granule cells in mice 8-12 wk after cortical contusion injury. Mice were monitored for behavioral seizures shortly after brain injury and < or = 10 wk postinjury.

View Article and Find Full Text PDF