Publications by authors named "Robert F Graziano"

Fragment crystallizable (Fc) fusion is commonly used for extending the half-life of biotherapeutics such as cytokines. In this work, we studied the pharmacokinetics of Fc-fused interleukin-10 (IL-10) proteins that exhibited potent antitumor activity in mouse syngeneic tumor models. At pharmacologically active doses of ≥0.

View Article and Find Full Text PDF

Elotuzumab (Elo) is an IgG monoclonal antibody targeting SLAMF7 (CS1, CRACC, and CD319), which is highly expressed on multiple myeloma (MM) cells, natural killer (NK) cells, and subsets of other leukocytes. By engaging with FcγRIIIA (CD16), Elo promotes potent NK cell-mediated antibody-dependent cellular cytotoxicity (ADCC) and macrophage-mediated antibody-dependent cellular phagocytosis (ADCP) toward SLAMF7 MM tumor cells. Relapsed/refractory MM patients treated with the combination of Elo, lenalidomide, and dexamethasone have improved progression-free survival.

View Article and Find Full Text PDF

While a fraction of cancer patients treated with anti-PD-1 show durable therapeutic responses, most remain unresponsive, highlighting the need to better understand and improve these therapies. Using an in vivo screening approach with a customized shRNA pooled library, we identified DDR2 as a leading target for the enhancement of response to anti-PD-1 immunotherapy. Using isogenic in vivo murine models across five different tumor histologies-bladder, breast, colon, sarcoma, and melanoma-we show that DDR2 depletion increases sensitivity to anti-PD-1 treatment compared to monotherapy.

View Article and Find Full Text PDF

Monoclonal antibodies can mediate antitumor activity by multiple mechanisms. They can bind directly to tumor receptors resulting in tumor cell death, or can bind to soluble growth factors, angiogenic factors, or their cognate receptors blocking signals required for tumor cell growth or survival. Monoclonal antibodies, upon binding to tumor cell, can also engage the host's immune system to mediate immune-mediated destruction of the tumor.

View Article and Find Full Text PDF

The FcγRs are immune cell surface proteins that bind IgG and facilitate cytokine production, phagocytosis, and Ab-dependent, cell-mediated cytotoxicity. FcγRs play a critical role in immunity; variation in these genes is implicated in autoimmunity and other diseases. Cynomolgus macaques are an excellent animal model for many human diseases, and Mauritian cynomolgus macaques (MCMs) are particularly useful because of their restricted genetic diversity.

View Article and Find Full Text PDF

Elotuzumab, a humanized monoclonal antibody that binds human signaling lymphocytic activation molecule F7 (hSLAMF7) on myeloma cells, was developed to treat patients with multiple myeloma (MM). Elotuzumab has a dual mechanism of action that includes the direct activation of natural killer (NK) cells and the induction of NK cell-mediated antibody-dependent cellular cytotoxicity. This study aimed to characterize the effects of elotuzumab on NK cells in vitro and in patients with MM and to determine whether elotuzumab antitumor activity was improved by programmed death receptor-1 (PD-1) blockade.

View Article and Find Full Text PDF

TL1A, a tumor necrosis factor-like cytokine, is a ligand for the death domain receptor DR3. TL1A, upon binding to DR3, can stimulate lymphocytes and trigger secretion of proinflammatory cytokines. Therefore, blockade of TL1A/DR3 interaction may be a potential therapeutic strategy for autoimmune and inflammatory diseases.

View Article and Find Full Text PDF

Elotuzumab is a humanized therapeutic monoclonal antibody directed to the surface glycoprotein SLAMF7 (CS1, CRACC, CD319), which is highly expressed on multiple myeloma (MM) tumor cells. Improved clinical outcomes have been observed following treatment of MM patients with elotuzumab in combination with lenalidomide or bortezomib. Previous work showed that elotuzumab stimulates NK cell-mediated antibody-dependent cellular cytotoxicity (ADCC), via Fc-domain engagement with FcγRIIIa (CD16).

View Article and Find Full Text PDF

Antibody blockade of programmed death-1 (PD-1) or its ligand, PD-L1, has led to unprecedented therapeutic responses in certain tumor-bearing individuals, but PD-L1 expression's prognostic value in stratifying cancer patients for such treatment remains unclear. Reports conflict on the significance of correlations between PD-L1 on tumor cells and positive clinical outcomes to PD-1/PD-L1 blockade. We investigated this issue using genomically related, clonal subsets from the same methylcholanthrene-induced sarcoma: a highly immunogenic subset that is spontaneously eliminated in vivo by adaptive immunity and a less immunogenic subset that forms tumors in immunocompetent mice, but is sensitive to PD-1/PD-L1 blockade therapy.

View Article and Find Full Text PDF

Purpose: This study was undertaken to evaluate the effects of MDX-1401, a nonfucosylated fully human monoclonal antibody that binds to human CD30, and to determine whether it exhibits greater in vitro and in vivo activity than its parental antibody.

Experimental Design: Assays measuring antibody binding to CD30-expressing cells and FcgammaRIIIa (CD16) transfectants as well as antibody-dependent cellular cytotoxicity (ADCC) were conducted. Antitumor activity was determined using a Karpas-299 systemic model.

View Article and Find Full Text PDF

Expression of the type I receptor for Fc domain of immunoglobulin (Ig)G (Fc gammaRI or CD64) is restricted to myeloid effector cells, such as monocytes, macrophages and a subset of dendritic cells. Previous work has indicated a role for Fc gammaRI in antibody-dependent phagocytosis and lysis of tumour cells. We hypothesised that tagging of tumour cells with an anti-Fc gammaRI single chain Fv (sFv) may facilitate targeting to this receptor on effector cells, thereby initiating tumour cytotoxicity.

View Article and Find Full Text PDF

There is a continuing need for alternatives to current human adjuvants. Recombinant protein vaccines, which target antigen to human Fc gamma receptor type I (hFcgammaRI) on hFcgammaRI-expressing antigen presenting cells, provide one potential alternative. Using a recombinant anti-hFcgammaRI-antigen fusion protein and adjuvant independent mouse model, we demonstrate enhanced antigen-specific antibody responses to low doses of antigen, when targeting antigen to hFcgammaRI in vivo.

View Article and Find Full Text PDF

The use of monoclonal antibodies for immunotherapy has been validated by the commercialization of multiple monoclonal antibody products for oncology, infectious diseases and autoimmune diseases. In addition to their application as 'naked' antibodies, they have been used as delivery vehicles for cytotoxic agents to cancer cells. The exquisite specificity of antibodies can also be exploited to initiate and/or enhance the immune response to tumors or infectious agents by targeting the relevant antigen to antigen-presenting cells (APCs).

View Article and Find Full Text PDF

Background: Severe acute respiratory syndrome (SARS) remains a significant public health concern after the epidemic in 2003. Human monoclonal antibodies (MAbs) that neutralize SARS-associated coronavirus (SARS-CoV) could provide protection for exposed individuals.

Methods: Transgenic mice with human immunoglobulin genes were immunized with the recombinant major surface (S) glycoprotein ectodomain of SARS-CoV.

View Article and Find Full Text PDF

This chapter discusses two related methods for creating Fab' x Fab' chemically linked BsAb. Both methods require the generation of purified F(ab')2 fragments of each antibody and use reagents that react with the free thiols generated upon reduction of interheavy chain disulfide bonds of the F(ab')2 fragments. Upon reduction, the resulting Fabs are then recombined to form a Fab' x Fab' BsAb.

View Article and Find Full Text PDF

The immune modulatory molecule CTLA-4 (CD152), through interactions with the B7 costimulatory molecules, has been shown to be a negative regulator of T cell activation in various murine model systems. Abs that block CTLA-4 function can enhance immune responses that mediate potent antitumor activity. However, CTLA-4 blockade can also exacerbate autoimmune disease.

View Article and Find Full Text PDF

CD30 is a promising target for antibody-based immunotherapy of Hodgkin lymphoma (HL) and anaplastic large cell lymphoma. To overcome the limitations from currently available murine anti-CD30 monoclonal antibodies (mAbs), a new fully human anti-CD30 antibody was generated. Binding properties were evaluated by recombinant CD30 capture enzyme-linked immunosorbent assay (ELISA) and fluorescence-activated cell-sorter (FACS) flow cytometry.

View Article and Find Full Text PDF

The professional antigen presenting cell (APC) plays an essential role in the initiation and propagation of the acquired immune response. Thus, much work has been done in designing strategies that target vaccine antigen (Ag) to APC. Utilizing recombinant DNA technology, we have created a unique two-component system that delivers biotinylated Ag to the Fc gamma receptor type I (FcgammaRI) on APC.

View Article and Find Full Text PDF