A new setup for fast in situ SAXS studies of early stages in the nucleation and growth of colloidal nanoparticles is presented. Evading the disturbing influence of container walls and minimizing the possibility of beam-induced reactions, the benefits of the setup are demonstrated exemplarily for the well-known synthesis of gold nanoparticles via the Turkevich method. Analysis with the new experimental setup reveals the initial rate of particle formation, and enables analysis of particle growth rates.
View Article and Find Full Text PDFA facile approach for the synthesis of monodisperse gold nanoparticles with radii in the range of 7 to 20 nm is presented. Starting from monodisperse seeds with radii of 7 nm, produced in the first step, the addition of a defined amount of additional precursor material permits distinct size regulation and the realization of predicted nanoparticle sizes. These information were derived from ex- and in situ investigations by comprehensive small angle X-ray scattering (SAXS), X-ray absorption near edge structure (XANES) and UV-Vis data to obtain information on the physicochemical mechanisms.
View Article and Find Full Text PDFGold nanoparticles (AuNP) were prepared by the homogeneous mixing of continuous flows of an aqueous tetrachloroauric acid solution and a sodium borohydride solution applying a microstructured static mixer. The online characterization and screening of this fast process ( approximately 2 s) was enabled by coupling a micromixer operating in continuous-flow mode with a conventional in-house small angle X-ray scattering (SAXS) setup. This online characterization technique enables the time-resolved investigation of the growth process of the nanoparticles from an average radius of ca.
View Article and Find Full Text PDF