Publications by authors named "Robert Eisenthal"

Dextran solutions intended for use as plasma extenders have been observed to form insoluble precipitates. Earlier studies of precipitation have shown that in solutions of 50% and 60% w/w of dextran molecular mass 6000 g mol(-1) beaded precipitates are formed over a two-week period. This study considers dextran precipitation over a wider molecular mass range and the kinetics, of formation, morphology and potential utility of these precipitates is investigated.

View Article and Find Full Text PDF

The two established thermal properties of enzymes are their activation energy and their thermal stability. Arising from careful measurements of the thermal behaviour of enzymes, a new model, the Equilibrium Model, has been developed to explain more fully the effects of temperature on enzymes. The model describes the effect of temperature on enzyme activity in terms of a rapidly reversible active-inactive transition, in addition to an irreversible thermal inactivation.

View Article and Find Full Text PDF

The ratio k(cat)/K(M)--often referred to as the "specificity constant"--is a useful index for comparing the relative rates of an enzyme acting on alternative, competing substrates. However, an alternative description, "catalytic efficiency", is frequently used, and on occasions misused, to compare the reactivity of two enzymes acting on the same substrate. Here, we highlight the pitfalls in using k(cat)/K(M) to compare the catalytic effectiveness of enzymes.

View Article and Find Full Text PDF

The "Equilibrium Model" has provided new tools for describing and investigating enzyme thermal adaptation. It has been shown that the effect of temperature on enzyme activity is not only governed by deltaG(double dagger)(cat) and deltaG(double dagger)(inact) but also by two new intrinsic parameters, deltaH(eq) and T(eq), which describe the enthalpy and midpoint, respectively, of a reversible equilibrium between active and inactive (but not denatured) forms of enzyme. Twenty-one enzymes from organisms with a wide range of growth temperatures were characterized using the Equilibrium Model.

View Article and Find Full Text PDF

Hydrogel membranes have been fabricated that incorporate antibody/antigen moieties. The permeability of large solutes through these membranes is dependent on the presence of soluble antigen that can compete with the internal interactions between antibody and antigen leading to an increase in gel mesh size. Specifically, the membrane's structure is based on a dextran backbone grafted with a fluorescein isothiocyanate (FITC) antigen and a sheep anti-FITC IgG antibody.

View Article and Find Full Text PDF

Traditionally, the dependence of enzyme activity on temperature has been described by a model consisting of two processes: the catalytic reaction defined by DeltaG(Dagger)(cat), and irreversible inactivation defined by DeltaG(Dagger)(inact). However, such a model does not account for the observed temperature-dependent behaviour of enzymes, and a new model has been developed and validated. This model (the Equilibrium Model) describes a new mechanism by which enzymes lose activity at high temperatures, by including an inactive form of the enzyme (E(inact)) that is in reversible equilibrium with the active form (E(act)); it is the inactive form that undergoes irreversible thermal inactivation to the thermally denatured state.

View Article and Find Full Text PDF

The way that enzymes respond to temperature is fundamental to many areas of biotechnology. This has long been explained in terms of enzyme stability and catalytic activation energy, but recent observations of enzyme behaviour suggest that this picture is incomplete. We have developed and experimentally validated a new model to describe the effect of temperature on enzymes; this model incorporates additional fundamental parameters that enable a complete description of the effects of temperature on enzyme activity.

View Article and Find Full Text PDF

The present paper addresses the selective recovery of lysozyme from egg white using CM-dextran (carboxymethyldextran)-based hydrogels containing Cibacron Blue as an affinity ligand and co-immobilized BSA intended to act as a shielding agent to reduce non-specific adsorption. Initial studies using pure lysozyme were conducted that indicated that the adsorption capacity increased with ligand density and that adsorption was well described by a Langmuir-type isotherm. The inclusion of BSA as a putative shielding agent did not decrease the adsorption capacity for lysozyme in single-adsorbate experiments.

View Article and Find Full Text PDF

A fast and simple method for the preparation of pH-sensitive hydrogel membranes for drug delivery and tissue engineering applications has been developed using carbodiimide chemistry. The hydrogels were formed by the intermolecular cross-linking of carboxymethyl dextran (CM-dextran) using 1-ethyl-(3-3-dimethylaminopropyl)carbodiimide hydrochloride (EDC) and N-hydroxysuccinimide (NHS). Infrared spectra of the hydrogels suggest the formation of ester bonds between the hydroxyl and carboxyl groups in the CM-dextran.

View Article and Find Full Text PDF

Two established thermal properties of enzymes are the Arrhenius activation energy and thermal stability. Arising from anomalies found in the variation of enzyme activity with temperature, a comparison has been made of experimental data for the activity and stability properties of five different enzymes with theoretical models. The results provide evidence for a new and fundamental third thermal parameter of enzymes, T(eq), arising from a subsecond timescale-reversible temperature-dependent equilibrium between the active enzyme and an inactive (or less active) form.

View Article and Find Full Text PDF

It is desirable that cells adsorbed in affinity-separation processes be easily recovered from the adsorption surface, without excessive dilution, once contaminants have been removed. The present study investigates the use of gas-bubble-induced shear stress for the recovery of affinity-adsorbed human erythrocytes. This method has previously been demonstrated to be effective with yeast cells, where it allows cells to be attached, washed and detached under isocratic conditions.

View Article and Find Full Text PDF

A novel method of estimating the kinetic parameters of Taq DNA polymerase during rapid cycle PCR is presented. A model was constructed using a simplified sigmoid function to represent substrate accumulation during PCR in combination with the general equation describing high substrate inhibition for Michaelis-Menten enzymes. The PCR progress curve was viewed as a series of independent reactions where initial rates were accurately measured for each cycle.

View Article and Find Full Text PDF

Human and bovine milk inhibited the metabolic activity of Escherichia coli, as shown by luminescence monitoring of constructs expressing the luxCDABE genes. Inhibition was dependent on both xanthine oxidase (XO) activity and on the presence of nitrite, implying that XO-generated nitric oxide functions as an antibacterial agent.

View Article and Find Full Text PDF