Site-specific chemical modification, especially with isotopically enriched groups, allows one to study the structure and dynamics of proteins for which uniform enrichment is difficult. When the N-terminal alanine in antifreeze glycoprotein (AFGP) is replaced with an N,N-dimethyl alanine the methyl groups show signatures of slow rotation about the C-N bond. In order to separate the local dynamics of the N-terminus from the overall protein dynamics, we present a complete characterization of this dynamics.
View Article and Find Full Text PDFThe physical nature underlying intermolecular interactions between two rod-like winter flounder antifreeze protein (AFP) molecules and their implication for the mechanism of antifreeze function are examined in this work using molecular dynamics simulations, augmented with free energy calculations employing a continuum solvation model. The energetics for different modes of interactions of two AFP molecules is examined in both vacuum and aqueous phases along with the water distribution in the region encapsulated by two antiparallel AFP backbones. The results show that in a vacuum two AFP molecules intrinsically attract each other in the antiparallel fashion, where their complementary charge side chains face each other directly.
View Article and Find Full Text PDFStructure and dynamics of biomolecules in supercooled water assume a particular and distinct importance in the case of antifreeze glycoproteins (AFGPs), which function at sub-zero temperatures. To investigate whether any large-scale structural digressions in the supercooled state are correlated to the function of AFGPs, self-diffusion behavior of the AFGP8, the smallest AFGP is monitored as a function of temperature from 243 to 303 K using nuclear magnetic resonance (NMR) spectroscopy. The experimental results are compared with the hydrodynamic calculations using the viscosity of water at the same temperature range.
View Article and Find Full Text PDFRecent NMR studies of the solution structure of the 14-amino acid antifreeze glycoprotein AFGP-8 have concluded that the molecule lacks long-range order. The implication that an apparently unstructured molecule can still have a very precise function as a freezing inhibitor seems startling at first consideration. To gain insight into the nature of conformations and motions in AFGP-8, we have undertaken molecular dynamics simulations augmented with free energy calculations using a continuum solvation model.
View Article and Find Full Text PDFPolar fish, cold hardy plants, and overwintering insects produce antifreeze proteins (AFPs), which lower the freezing point of solutions noncolligatively and inhibit ice crystal growth. Fish AFPs have been shown to stabilize membranes and cells in vitro during hypothermic storage, probably by interacting with the plasma membrane, but the mechanism of this stabilization has not been clear. We show here that during chilling to nonfreezing temperatures the alpha-helical AFP type I from polar fish inhibits leakage across model membranes containing an unsaturated chloroplast galactolipid.
View Article and Find Full Text PDFAntifreeze glycoproteins from the Greenland cod Boreogadus saida were dimethylated at the N-terminus (m*AFGP) and their dynamics and conformational properties were studied in the presence of ice using (13)C-NMR and FTIR spectroscopy. (13)C-NMR experiments of m*AFGP in D(2)O, in H(2)O, and of freeze-dried m*AFGP were performed as a function of temperature. Dynamic parameters ((1)H T(1 rho) and T(CH)) obtained by varying the contact time revealed notable differences in the motional properties of AFGP between the different states.
View Article and Find Full Text PDF