Publications by authors named "Robert E Seegmiller"

Teratology is the study of anatomical and physiological abnormalities, commonly known as birth defects. If an embryo is exposed to a harmful substance, or teratogen, during the critical period of development, an ensuing malformation may occur. These malformations and their associated mechanisms are studied and analyzed in laboratory animals in order to prevent them from occurring in humans.

View Article and Find Full Text PDF

Background: The mutant chondrodysplasia (cho) is a cartilage-targeting disorder in C57BL mice that results in dwarfing and other malformations stemming from this collagenopathy. Clarke Fraser made the discovery of the mutation accidentally in the early 1960s during the thalidomide tragedy.

Methods: For this review we identified key research on cho as since its discovery.

View Article and Find Full Text PDF

Collagen XI alpha 1 (Col11a1) is an extracellular matrix molecule required for embryonic development with a role in both nucleating the formation of fibrils and regulating the diameter of heterotypic fibrils during collagen fibrillar assembly. Although found in many different tissues throughout the vertebrate body, Col11a1 plays an essential role in endochondral ossification. To further understand the function of Col11a1 in the process of bone formation, we compared skeletal mineralization in wild-type (WT) mice and Col11a1-deficient mice using X-ray microtomography (micro-CT) and histology.

View Article and Find Full Text PDF

Heterozgyous spondyloepiphyseal dysplasia congenita (sedc/+) mice expressing a missense mutation in col2a1 exhibit a normal skeletal morphology but early-onset osteoarthritis (OA). We have recently examined knee articular cartilage obtained from homozygous (sedc/sedc) mice, which express a Stickler-like phenotype including dwarfism. We examined sedc/sedc mice at various levels to better understand the mechanistic process resulting in OA.

View Article and Find Full Text PDF

Teratology is the study of anatomical and physiological abnormalities, commonly known as birth defects. If an embryo is exposed to a harmful substance, or teratogen, during the critical period of development, an ensuing malformation may occur. These malformations and their associated mechanisms are studied and analyzed in laboratory animals in order to prevent them from occurring in humans.

View Article and Find Full Text PDF

Collagens V and XI comprise a single regulatory type of fibril-forming collagen with multiple isoforms. Both co-assemble with collagen I or II to form heterotypic fibrils and have been implicated in regulation of fibril assembly. The objective of this study was to determine the roles of collagens V and XI in the regulation of tendon fibrillogenesis.

View Article and Find Full Text PDF

The disproportionate micromelia (Dmm) mouse has a mutation in the C-propeptide coding region of the Col2a1 gene that causes lethal dwarfism when homozygous (Dmm/Dmm) but causes only mild dwarfism observable approximately 1-week postpartum when heterozygous (Dmm/+). The purpose of this study was 2-fold: first, to analyze and quantify morphological changes that precede the expression of mild dwarfism in Dmm/+ animals, and second, to compare morphological alterations between Dmm/+ and Dmm/Dmm fetal cartilage that may correlate with the marked skeletal differences between mild and lethal dwarfism. Light and electron transmission microscopy were used to visualize structure of chondrocytes and extracellular matrix (ECM) of fetal rib cartilage.

View Article and Find Full Text PDF

Molecular mechanisms controlling the assembly of cartilage-specific types II, IX and XI collagens into a heteropolymeric network of uniformly thin, unbanded fibrils are not well understood, but collagen XI has been implicated. The present study on cartilage from the homozygous chondrodysplasia (cho/cho) mouse adds support to this concept. In the absence of alpha1(XI) collagen chains, thick, banded collagen fibrils are formed in the extracellular matrix of cho/cho cartilage.

View Article and Find Full Text PDF

The Disproportionate micromelia (Dmm) mouse has a three nucleotide deletion in Col2a1 in the region encoding the C-propeptide which results in the substitution of one amino acid, Asn, for two amino acids, Lys-Thr. Western blot and immunohistochemical analyses failed to detect type II collagen in the cartilage matrix of the homozygous mice and showed reduced levels in the matrix of heterozygous mice. Type II collagen chains localized intracellularly within the chondrocytes of homozygote and heterozygote tissues.

View Article and Find Full Text PDF

Background: During formation of the secondary palate, clefting may result when critical developmental events are altered. The purpose of this study was to reduce the incidence of retinoic acid (RA)-induced cleft palate (CP) in mice by the co-administration of folic acid (FA), methionine (ME) or a combination of both.

Methods: Four groups of time-pregnant Swiss Webster mice were injected intraperitoneally with 50 mg/kg RA on gestational day (GD) 10.

View Article and Find Full Text PDF

Background: Development of the human craniofacial anatomy involves a number of interrelated, genetically controlled components. The complexity of the interactions between these components suggests that interference with the spaciotemporal interaction of the expanding tongue and elongating Meckel's cartilage correlates with the appearance of cleft palate. Mice homozygous for the semi-dominant Col2a1 mutation Disproportionate micromelia (Dmm), presenting at birth with both cleft palate and micrognathia, provide the opportunity to test the hypothesis that mandibular growth retardation coincides with formation of the secondary palate as predicted from our understanding of the Pierre Robin sequence.

View Article and Find Full Text PDF