Publications by authors named "Robert E Schaffert"

Article Synopsis
  • Climate change negatively impacts crop yields, including resilient crops like sorghum, which poses a risk to global food security.
  • A study investigated the genetic basis of sorghum's adaptation to drought through a genome-wide analysis, revealing significant markers linked to grain yield and phenology traits under varying environmental conditions.
  • Findings indicate that factors like increasing humidity and temperature affect sorghum's grain yield, showing that breeding for crop resilience is complicated by the unpredictable nature of climate change.
View Article and Find Full Text PDF

Background: On tropical regions, phosphorus (P) fixation onto aluminum and iron oxides in soil clays restricts P diffusion from the soil to the root surface, limiting crop yields. While increased root surface area favors P uptake under low-P availability, the relationship between the three-dimensional arrangement of the root system and P efficiency remains elusive. Here, we simultaneously assessed allelic effects of loci associated with a variety of root and P efficiency traits, in addition to grain yield under low-P availability, using multi-trait genome-wide association.

View Article and Find Full Text PDF

During the past decade, sweet sorghum (Sorghum bicolor Moench L.) has shown great potential for bioenergy production, especially biofuels. In this study, 223 recombinant inbred lines (RILs) derived from a cross between two sweet sorghum lines (Brandes × Wray) were evaluated in three trials.

View Article and Find Full Text PDF

The association between arbuscular mycorrhizal fungi (AMF) and sorghum, the fifth most cultivated cereal in the world and a staple food for many countries, is relevant to improving phosphorus (P) absorption. The importance of root exudation as a signal for the symbiosis has been shown for several species, but a complete understanding of the signaling molecules involved in the mycorrhizal symbiosis signaling pathway has not yet been elucidated. In this context, we investigated the effect of sorgoleone, one of the most studied allelochemicals and a predominant compound of root exudates in sorghum, on AMF colonization and consequently P uptake and plant growth on a sorghum genotype.

View Article and Find Full Text PDF

A multiparental random mating population used in sorghum breeding is amenable for the detection of QTLs related to tropical soil adaptation, fine mapping of underlying genes and genomic selection approaches. Tropical soils where low phosphorus (P) and aluminum (Al) toxicity limit sorghum [Sorghum bicolor (L.) Moench] production are widespread in the developing world.

View Article and Find Full Text PDF

Background: Phosphorus (P) fixation on aluminum (Al) and iron (Fe) oxides in soil clays restricts P availability for crops cultivated on highly weathered tropical soils, which are common in developing countries. Hence, P deficiency becomes a major obstacle for global food security. We used multi-trait quantitative trait loci (QTL) mapping to study the genetic architecture of P efficiency and to explore the importance of root traits on sorghum grain yield on a tropical low-P soil.

View Article and Find Full Text PDF

Acidic soils, where aluminum (Al) toxicity is a major agricultural constraint, are globally widespread and are prevalent in developing countries. In sorghum, the root citrate transporter SbMATE confers Al tolerance by protecting root apices from toxic Al, but can exhibit reduced expression when introgressed into different lines. We show that allele-specific transactivation occurs and is caused by factors located away from Using expression-QTL mapping and expression genome-wide association mapping, we establish that transcription is controlled in a bipartite fashion, primarily in but also in Multiallelic promoter transactivation and ChIP analyses demonstrated that intermolecular effects on expression arise from a WRKY and a zinc finger-DHHC transcription factor (TF) that bind to and -activate the promoter.

View Article and Find Full Text PDF

Root damage due to aluminum (Al) toxicity restricts crop production on acidic soils, which are extensive in the tropics. The sorghum root Al-activated citrate transporter, SbMATE, underlies the Al tolerance locus, Alt, and increases grain yield under Al toxicity. Here, Alt loci associated with Al tolerance were converted into Amplification Refractory Mutation System (ARMS) markers, which are cost effective and easy to use.

View Article and Find Full Text PDF

The increasing cost of energy and finite oil and gas reserves have created a need to develop alternative fuels from renewable sources. Due to its abiotic stress tolerance and annual cultivation, high-biomass sorghum ( L. Moench) shows potential as a bioenergy crop.

View Article and Find Full Text PDF

Sweet sorghum [Sorghum bicolor (L.) Moench] is a type of cultivated sorghum characterized by the accumulation of high levels of sugar in the stems and high biomass accumulation, making this crop an important feedstock for bioenergy production. Sweet sorghum breeding programs that focus on bioenergy have two main goals: to improve quantity and quality of sugars in the juicy stem and to increase fresh biomass productivity.

View Article and Find Full Text PDF

Sorghum is a source of several minerals whose content may vary depending on the genotype and the production environment. The objective of this study was to screen sorghum genotypes for mineral content and to investigate the effect of water stress on it. A large variability was observed in the mineral content of 100 sorghum genotypes grown in environments without (WoWS) and with water stress (WthWS).

View Article and Find Full Text PDF

Aluminum (Al) toxicity damages plant roots and limits crop production on acid soils, which comprise up to 50% of the world's arable lands. A major Al tolerance locus on chromosome 3, AltSB, controls aluminum tolerance in sorghum [Sorghum bicolor (L.) Moench] via SbMATE, an Al-activated plasma membrane transporter that mediates Al exclusion from sensitive regions in the root apex.

View Article and Find Full Text PDF

The resistant starch (RS) contents in 49 sorghum genotypes and the effects of heat treatment using dry and wet heat on the grain and flour from two sorghum genotypes were investigated. The results showed a wide variation in the RS contents of the genotypes analyzed. The RS mean values were grouped into six distinct groups and ranged from 0.

View Article and Find Full Text PDF

Low soil phosphorus (P) availability is a major constraint for crop production in tropical regions. The rice (Oryza sativa) protein kinase, PHOSPHORUS-STARVATION TOLERANCE1 (OsPSTOL1), was previously shown to enhance P acquisition and grain yield in rice under P deficiency. We investigated the role of homologs of OsPSTOL1 in sorghum (Sorghum bicolor) performance under low P.

View Article and Find Full Text PDF

Root damage caused by aluminum (Al) toxicity is a major cause of grain yield reduction on acid soils, which are prevalent in tropical and subtropical regions of the world where food security is most tenuous. In sorghum, Al tolerance is conferred by SbMATE, an Al-activated root citrate efflux transporter that underlies the major Al tolerance locus, AltSB, on sorghum chromosome 3. We used association mapping to gain insights into the origin and evolution of Al tolerance in sorghum and to detect functional variants amenable to allele mining applications.

View Article and Find Full Text PDF

Impaired root development caused by aluminum (Al) toxicity is a major cause of grain yield reduction in crops cultivated on acid soils, which are widespread worldwide. In sorghum, the major Al-tolerance locus, AltSB , is due to the function of SbMATE, which is an Al-activated root citrate transporter. Here we performed a molecular and physiological characterization of various AltSB donors and near-isogenic lines harboring various AltSB alleles.

View Article and Find Full Text PDF

Background: Acid soils comprise up to 50% of the world's arable lands and in these areas aluminum (Al) toxicity impairs root growth, strongly limiting crop yield. Food security is thereby compromised in many developing countries located in tropical and subtropical regions worldwide. In sorghum, SbMATE, an Al-activated citrate transporter, underlies the Alt(SB) locus on chromosome 3 and confers Al tolerance via Al-activated root citrate release.

View Article and Find Full Text PDF
Article Synopsis
  • Aluminum toxicity in acidic soils reduces crop yields, affecting up to 50% of arable land worldwide.
  • Researchers identified a gene in sorghum related to aluminum tolerance, which encodes an aluminum-activated citrate transporter from the MATE family.
  • Variations in this gene's regulatory regions enhance its expression in root tips, promoting citrate release that mitigates aluminum's toxic effects, aiding in breeding efforts to improve crop yields in acid-prone regions.
View Article and Find Full Text PDF

In several crop species within the Triticeae tribe of the grass family Poaceae, single major aluminum (Al) tolerance genes have been identified that effectively mitigate Al toxicity, a major abiotic constraint to crop production on acidic soils. However, the trait is quantitatively inherited in species within other tribes, and the possible ancestral relationships between major Al tolerance genes and QTL in the grasses remain unresolved. To help establish these relationships, we conducted a molecular genetic analysis of Al tolerance in sorghum and integrated our findings with those from previous studies performed in crop species belonging to different grass tribes.

View Article and Find Full Text PDF

Maize bushy stunt phytoplasma (MBSP) and corn stunt spiroplasma (CSS) diseases are widespread in Brazil. The leafhopper Dalbulus maidis is the insect vector for these pathogenic mollicutes. The effects of these diseases on the development of maize plants and the possible interaction of soil water availability on these effects were evaluated in two experiments carried out on potted plants.

View Article and Find Full Text PDF