Publications by authors named "Robert E Humphreys"

Life-threatening diseases, such as cancer and pandemic influenza, demand new efforts towards effective vaccine design. Peptides represent a simple, safe and adaptable basis for vaccine development; however, the potency of peptide vaccines is insufficient in most cases for significant therapeutic efficacy. Several methods, such as Ligand Epitope Antigen Presentation System and ISCOMATRIX, have been developed to enhance the potency of peptide vaccines.

View Article and Find Full Text PDF

Summary One function of the major histocompatibility complex (MHC) class II-associated invariant chain (Ii) is to prevent MHC class II molecules from binding endogenously generated antigenic epitopes. Ii inhibition leads to MHC class II presentation of endogenous antigens by APC without interrupting MHC class I presentation. We present data that in vivo immunization of BALB/c mice with HIV gp120 cDNA plus an Ii suppressive construct significantly enhances the activation of both gp120-specific T helper (Th) cells and cytotoxic T lymphocytes (CTL).

View Article and Find Full Text PDF

We have demonstrated that coupling an immunoregulatory segment of the MHC class II-associated invariant chain (Ii), the Ii-Key peptide, to a promiscuous MHC class II epitope significantly enhances its presentation to CD4+ T cells. Here, a series of homologous Ii-Key/HER-2/neu(776-790) hybrid peptides, varying systematically in the length of the epitope(s)-containing segment, are significantly more potent than the native peptide in assays using T cells from patients with various types of tumors overexpressing HER-2/neu. In particular, priming normal donor and patient PBMCs with Ii-Key hybrid peptides enhances recognition of the native peptide either pulsed onto autologous dendritic cells (DCs) or naturally presented by IFN-gamma-treated autologous tumor cells.

View Article and Find Full Text PDF

The general principle for tumor cells to escape from immune surveillance is to prevent tumor antigens from being recognized by the immune system. Many methods have been developed to increase the immunogenecity of the tumor cells. The most efficient methods are able to force tumor cells to present their own tumor antigens to the immune system.

View Article and Find Full Text PDF

Potent MHC class II antigenic peptide vaccines are created by covalently linking the N-terminus of a MHC class II epitope through a polymethylene bridge to the C-terminus of the Ii-Key segment of the Ii protein. Such hybrids enhance potency of presentation in vitro of the MHC class II epitope about 200 times relative to the epitope-only peptide. In vivo, as measured by IFN-gamma ELISPOT assays, the helper T cell response to vaccination is enhanced up to 8 times.

View Article and Find Full Text PDF

Linking the Ii-Key functional group LRMK, through a simple polymethylene linker, to the melanoma gp100(48-58) MHC class II epitope significantly enhances the vaccine response to that epitope in DR4-IE transgenic mice. A homologous series of Ii-Key/gp100(46-58) hybrids was synthesized to test the influence of spacer length (between Ii-Key and the gp100(48-58) epitope) on in vivo enhancement of gp100(48-58)-specific CD4+ T-lymphocyte responses. As measured by IFN-gamma and IL-4 ELISPOT cytokine assays, the most effective vaccine hybrid was the one with a shorter linker between Ii-Key and the epitope.

View Article and Find Full Text PDF

Linkage of the Ii-Key segment of the Ii protein to MHC class II epitope gp100(46-58) using a polymethylene linker significantly enhances the production of epitope-specific antibodies in HLA-DR4-IE transgenic mice. This enhancement is not restricted by the spacer length in between the Ii-Key and epitope. The use of either IFA or CFA induced only epitope-specific IgG1.

View Article and Find Full Text PDF

Ii protein suppression is a promising antisense drug-based therapy that dramatically enhances the immunogenicity of tumor cell major histocompatibility complex class II-presented antigenic epitopes. The strength of this approach is that the antisense only needs to be transiently effective in a fraction of the tumor cells. The systemic antitumor immune response generated subsequently eradicates both directly treated cells and distant tumor deposits.

View Article and Find Full Text PDF

Immunological control or cure of tumors depends on initiating a robust T helper cell response to MHC class II epitopes of tumor-associated antigens. T helper cells regulate the potency of cytotoxic T lymphocyte and antibody responses. We have developed a novel approach to stimulate T helper cells by converting tumor cells into MHC class II molecule-positive, antigen presenting cells.

View Article and Find Full Text PDF

Purpose: Cytotoxic T lymphocytes (CTL)- and T-helper cell-specific, and major histocompatibility complex (MHC) class-I and class-II peptides, respectively, of the HER-2/ neu protein, induce immune responses in patients. A major challenge in developing cancer peptide vaccines is breaking tolerance to tumor-associated antigens which are functionally self-proteins. An adequate CD4+ T-helper response is required for effective and lasting responses.

View Article and Find Full Text PDF

The Ii-Key/MHC class II epitope hybrid acts on MHC class II molecules to facilitate replacement of antigenic peptides with the epitope tethered to the Ii-Key motif. Hybrid peptides linking an immunoregulatory segment of the Ii protein (Ii-Key peptide) through a polymethylene bridge to MHC class II epitopes of HIV gp160 or gag are potent vaccines to elicit CD4(+) T cell responses. More potent responses to two MHC class II epitopes, HIV gp160(843-852) or HIV gag(279-292), occurred in mice immunized with Ii-Key hybrid peptides than with epitope-only peptides, as measured in IL-4 and IFN-gamma ELISPOT assays of splenic lymphocytes stimulated in vitro by epitope-only peptides.

View Article and Find Full Text PDF

A potent antitumor CD4(+) T-helper cell immune response is created by inducing tumor cells in vivo to a MHC class II(+)/Ii(- )phenotype. MHC class II and Ii molecules were induced in tumor cells in situ following tumor injection of a plasmid containing the gene for the MHC class II transactivator (CIITA). Ii protein was suppressed by the antisense effect of an Ii-reverse gene construct (Ii-RGC) in the same or another co-injected plasmid.

View Article and Find Full Text PDF

T helper cell-recognized epitopes were determined in chitinase of Onchocerca volvulus, a vaccine candidate protein. The proliferation of splenic T cells of mice immunized with recombinant protein was tested with a library of chitinase-peptides of 16 amino acids with termini overlapping by 12 amino acids, and a library of "designer peptides", i.e.

View Article and Find Full Text PDF