Publications by authors named "Robert E Hormann"

Highly strained cage hydrocarbons have long stood as fundamental molecules to explore the limits of chemical stability and reactivity, probe physical properties, and more recently as bioactive molecules and in materials discovery. Interestingly, the nitrogenous congeners have attracted much less attention. Previously absent from the literature, azahomocubanes, offer an opportunity to investigate the effects of a nitrogen atom when incorporated into a highly constrained polycyclic environment.

View Article and Find Full Text PDF

The ligand-inducible, ecdysteroid receptor (EcR) gene-expression system can add critical control features to protein expression in cell and gene therapy. However, potent natural ecdysteroids possess absorption, distribution, metabolism and excretion (ADME) properties that have not been optimised for use as gene-switch actuators in vivo. Herein we report the first systematic synthetic exploration of ecdysteroids toward modulation of gene-switch potency.

View Article and Find Full Text PDF

A set of thirty-two natural and ten semisynthetic ecdysteroids was assayed in murine 3T3 cells across ten different ecdysteroid receptor (EcR) ligand-binding domains derived from nine arthropod species in an engineered gene switch format. Among the ecdysteroids tested, the most biologically widespread ecdysteroid, 20-hydroxyecdysone (20E), was moderately and consistently potent across the tested EcRs. The most potent ligand-receptor combination (EC(50) = 0.

View Article and Find Full Text PDF

Regulated gene expression may substantially enhance gene therapy. Correlated with structural differences between insect ecdysteroids and mammalian steroids, the ecdysteroids appear to have a benign pharmacology without adversely interfering with mammalian signaling systems. Consequently, the ecdysone receptor-based gene switches are attractive for application in medicine.

View Article and Find Full Text PDF

The ecdysteroids (Ec), invertebrate steroid hormones, elicit genomic but also non-genomic effects. By analogy to vertebrates, non-genomic responses towards Ec may be mediated not only by distinct membrane-integrated but also by membrane-associated receptors like the classical nuclear ecdysteroid receptor (EcR) of arthropods. This is supported by a comparison of physiological properties between invertebrate and vertebrate steroid hormone systems and recent findings on the subcellular localization of EcR.

View Article and Find Full Text PDF

Solid phase, solution, and hybrid approaches to the synthesis of small focused libraries of alpha,alpha-disubstituted-alpha-acylaminoketones have been explored. Solution and hybrid approaches that used support-bound reagents and scavenger resins were the most productive.

View Article and Find Full Text PDF

Turkesterone is a phytoecdysteroid possessing an 11alpha-hydroxyl group. It is an analogue of the insect steroid hormone 20-hydroxyecdysone. Previous ecdysteroid QSAR and molecular modelling studies predicted that the cavity of the ligand binding domain of the ecdysteroid receptor would possess space in the vicinity of C-11/C-12 of the ecdysteroid.

View Article and Find Full Text PDF

Three ecdysteroid 7,9(11)-dien-7-ones (dacryhainansterone, 25-hydroxydacryhainansterone and kaladasterone) were prepared by dehydration of the corresponding 11a-hydroxy ecdysteroids (ajugasterone C, turkesterone and muristerone A, respectively). The biological activities of the dienones in the Drosophila melanogaster B(II) cell bioassay, which reflect the affinity for the ecdysteroid receptor complex, showed that the dienones retain high biological activity. Irradiation at 350 nm of the ecdysteroid dienones (100 nM) with bacterially-expressed dipteran and lepidopteran ecdysteroid receptor proteins (DmEcR/DmUSP or CfEcR/CfUSP), followed by loading with [(3)H]ponasterone A revealed that irradiation of dacryhainansterone or kaladasterone resulted in blocking of >70% of the specific binding sites.

View Article and Find Full Text PDF

The insect steroid hormone 20-hydroxyecdysone works through a ligand-activated nuclear receptor, the ecdysone receptor (EcR), which plays critical roles in insect development and reproduction. The EcR has been exploited to develop insecticides to control pests and gene switches for gene regulation. Recently reported crystal structures of the EcR protein show different but partially overlapping binding cavities for ecdysteroid (ECD) and diacylhydrazine (DAH) ligands, providing an explanation for the differential activity of DAH ligands in insects.

View Article and Find Full Text PDF

The EC50 values for a training set of 66 ecdysteroids and 97 diacylhydrazines were measured in the ecdysteroid-responsive Drosophila melanogaster BII cell line, a prototypical homologous inducible gene expression system. Each of eight superimposition hypotheses for the folded diacylhydrazine conformation was evaluated and ranked on the basis of CoMFA and 4D-QSAR Q2 values for the training set and R2 values for a 52-member test set comprising randomly-chosen diacylhydrazines and chronologically-chosen ecdysteroids for which data became available after model construction. Both 4D-QSAR and CoMFA rate a common superimposition as the preferred one.

View Article and Find Full Text PDF

Fifteen new alpha-acylaminoketones were prepared by four different routes in an initial effort to optimize the potency of these compounds as ecdysone agonists. The compounds were assayed in mammalian cells expressing the ecdysone receptors from Bombyx mori (BmEcR) and Choristoneura fumiferana (CfEcR) for their ability to cause expression of a reporter gene downstream of an ecdysone response element. A new alpha-acylaminoketone was identified which had activity equal to that of the standard dibenzoylhydrazine ecdysone agonist GS()-E in the assay based on CfEcR.

View Article and Find Full Text PDF

A lead discovery library and a follow-up focused library of alpha-acylaminoketones were designed based on known dibenzoylhydrazine ecdysone agonists, including GS(TM)-E. The compounds were assayed in mammalian cells expressing the ecdysone receptor from Bombyx mori for their ability to cause expression of a reporter gene downstream of an ecdysone response element. The most potent alpha-acylaminoketones were comparable to GS(TM)-E in this assay.

View Article and Find Full Text PDF