The low-frequency electrical properties of mixtures of silicates and saline H(2)O were measured over broad ranges of temperature and frequency to assess the subfreezing interactions between these materials synoptically, particularly the effects of adsorbed, unfrozen water. Adsorbed water content was determined using nuclear magnetic resonance. Materials were chosen to control effects of grain size and mineralogical complexity, and the initial salt content was also specified.
View Article and Find Full Text PDFWe measured the 1 mHz-1 MHz electrical properties of ice-hydrate binary systems formed from solutions of NaCl, CaCl(2), and MgSO(4), with supplementary measurements of HCl. Below the eutectic temperature, electrical parameters are well described by mixing models in which hydrate is always the connected phase. Above the eutectic temperature, a salt concentration threshold of approximately 3 mM in the initial solution is required for the unfrozen brine fraction to form interconnected, electrically conductive networks.
View Article and Find Full Text PDFWe developed a numerical model to assess the lithoautotrophic habitability of Mars based on metabolic energy, nutrients, water availability, and temperature. Available metabolic energy and nutrient sources were based on a laboratory-produced Mars-analog inorganic chemistry. For this specific reference chemistry, the most efficient lithoautotrophic microorganisms would use Fe(2+) as a primary metabolic electron donor and NO(3)(-) or gaseous O(2) as a terminal electron acceptor.
View Article and Find Full Text PDFIron meteorites are core fragments from differentiated and subsequently disrupted planetesimals. The parent bodies are usually assumed to have formed in the main asteroid belt, which is the source of most meteorites. Observational evidence, however, does not indicate that differentiated bodies or their fragments were ever common there.
View Article and Find Full Text PDF