Current biomaterials effectively replace biological structures but are limited by infections and long-term material failures. This study examined the molecular mechanisms of radio frequency glow discharge treatments (RFGDT) in mediating the disinfection of biomaterial surfaces and concurrently promoting cell attachment and proliferation. Dental biomaterials were subjected to RFGDT, and viability of oral microbial species, namely Streptococcus mutants (SM), Streptococcus gordonii (SG), Moraxella catarrhalis (MC), and Porphyromonas gingivalis (PG), were assessed.
View Article and Find Full Text PDFExposure of dental abutments to cleaning and sterilizing Radio Frequency Glow Discharge Treatment (RFGDT) triggered greater degrees of human gingival fibroblast (HGF) attachment and spreading over their surfaces. Enhanced cell growth and metabolic activity of such HGFs were found which might lead to improved cellular margins in the smile-revealing "esthetic zone". This investigation, approved by the Institutional Review Board, employed in vitro studies of HGFs to support in vivo clinical applications of differentially treated titanium healing abutments to demonstrate the possible improvements for tissue growth around dental implants.
View Article and Find Full Text PDFSensors (Basel)
June 2014
It was discovered at the beginning of this Century that living bacteria-and specifically the extremophile Pseudomonas syzgii-could be captured inside growing crystals of pure water-corroding semiconductors-specifically germanium-and thereby initiated pursuit of truly functional "biochip-based" biosensors. This observation was first made at the inside ultraviolet-illuminated walls of ultrapure water-flowing semiconductor fabrication facilities (fabs) and has since been, not as perfectly, replicated in simpler flow cell systems for chip manufacture, described here. Recognizing the potential importance of these adducts as optical switches, for example, or probes of metabolic events, the influences of the fabs and their components on the crystal nucleation and growth phenomena now identified are reviewed and discussed with regard to further research needs.
View Article and Find Full Text PDFMeetings of the Columbia University Biomaterial Seminars held in the 1970s and 80s are recounted from the personal perspectives of a participant and attendee. Important lessons regarding blood/foreign surface interactions that emanated from the seminars are reproduced along with a list of contemporary contributing members. These lessons continue to have broad relevance in furthering our understanding of the behavior of blood whenever it is used in artificial organ technology.
View Article and Find Full Text PDFTitanium (Ti) has been widely used as an implant material due to the excellent biocompatibility and corrosion resistance of its oxide surface. Biomaterials must be sterile before implantation, but the effects of sterilization on their surface properties have been less well studied. The effects of cleaning and sterilization on surface characteristics were bio-determined using contaminated and pure Ti substrata first manufactured to present two different surface structures: pretreated titanium (PT, Ra=0.
View Article and Find Full Text PDFJ Biomed Mater Res B Appl Biomater
May 2009
Partially polyurethane-covered stent (PPCS) is proposed for the treatment of cerebral aneurysms. The PPCSs were observed to substantially modify the flow entering the aneurysm in a patient-specific aneurysm phantom (PSAP). These stents can act as flow modulators and the polyurethane (PU) membrane can provide a smooth scaffold for restoring the structural integrity of the diseased vessel.
View Article and Find Full Text PDFEndovascular neurosurgery has gained acceptance as the best method of treatment of vascular abnormalities like cerebral aneurysms. However, the procedure is associated with difficulties in tool/tissue manipulation. Navigation of stent, catheter and, guide wire through complex arteries without any force information often causes stent snagging, plaque dislocations and formation of thrombosis caused by the damage of the arterial wall.
View Article and Find Full Text PDFRealistic trocar insertion simulator requires reliable and reproducible tissue data. This paper looks at using synthetic surrogate tissue to facilitate creation of data covering a wide range of pathological cases. Furthermore, we propose to map the synthetic puncture force data to the puncture force data obtained on animal/human tissue to create a simulation model of the procedure.
View Article and Find Full Text PDFIn order to determine whether breakage of long vitreous fibers in the lung could be responsible for removing significant numbers of these fibers, an intratracheal instillation study was done with a preparation consisting of mostly long fibers of two different types. Following instillation of both fibers, laboratory rats were sacrificed at 6 times up to 14 days. The NK (conventional borosilicate glass) fiber preparation had about 20% short fibers (length < or = 15 microm) initially, and fibers recovered from the lungs remained at that proportion for the entire 14 days.
View Article and Find Full Text PDFJ Mater Sci Mater Med
November 2006
"Biomaterials" are non-living substances selected to have predictable interactions with contacting biological phases, in applications ranging from medical/dental implants to food processing to control of biofouling in the sea. More than 30 years of empirical observations of the surface behaviours of various materials in biological settings, when correlated with the contact-angle-determined Critical Surface Tensions (CST) for these same materials, support the definition of the "theta surface". The "theta surface" is that characteristic expression of outermost atomic features least retentive of depositing proteins, and identified by the bioengineering criterion of having measured CST between 20 and 30 mN/m.
View Article and Find Full Text PDFJ Biomed Mater Res B Appl Biomater
July 2007
Tissue-on-tissue friction testing was used to determine how instillation of hydrophilic polymer-containing formulations between the "blinking" tissues would compare with lubrication by saline, alone, or an oil-emulsion preparation. Best results were obtained for a formulation that contained active demulcents polyethylene glycol (PEG 400) and propylene glycol (PG), as well as a gellable polymer hydroxypropyl guar (HP-Guar) in a borate-buffered solution, in comparison with hydroxypropylcellulose-containing and carboxymethylcellulose-containing formulations. Superior performance of all the formulations was found for lubricating tissue-on-tissue couples, compared with metal-oxide-to-metal oxide interfaces, or metal oxide-to-tissue interfaces.
View Article and Find Full Text PDF