Movement and selection are inherently linked behaviors that form the foundation of a species' space-use patterns. Anthropogenic development in natural ecosystems can result in a variety of behavioral responses that can involve changes in either movement (speed or direction of travel) or selection (resources used), which in turn may cause population-level consequences including loss of landscape connectivity. Understanding how a species alters these different behaviors in response to human activity is essential for effective conservation.
View Article and Find Full Text PDFHeterogeneous disturbance patterns are fundamental to rangeland conservation and management because heterogeneity creates patchy vegetation, broadens niche availability, increases compositional dissimilarity, and enhances temporal stability of aboveground biomass production. Pyrodiversity is a popular concept for how variability in fire as an ecological disturbance can enhance heterogeneity, but mechanistic understanding of factors that drive heterogeneity is lacking. Mesic grasslands are examples of ecosystems in which pyrodiversity is linked strongly to broad ecological processes such as trophic interactions because grazers are attracted to recently burned areas, creating a unique ecological disturbance referred to as the fire-grazing interaction, or pyric herbivory.
View Article and Find Full Text PDFDisturbance is critical for the conservation of rangeland ecosystems worldwide and many of these systems are fire dependent. Although it is well established that restoring fire as an ecological process can lead to increased biodiversity in grasslands and shrublands, the underlying mechanisms driving community patterns are poorly understood for fauna in fire-prone landscapes. Much of this uncertainty stems from the paucity of studies that examine the effects of fire at scales relevant to organism life histories.
View Article and Find Full Text PDF